Spark读写HBase示例

1、HBase shell查看表结构

hbase(main)::> desc 'SDAS_Person'
Table SDAS_Person is ENABLED
SDAS_Person
COLUMN FAMILIES DESCRIPTION
{NAME => 'cf0', BLOOMFILTER => 'ROW', VERSIONS => '', IN_MEMORY => 'false', KEEP_DELETED_CELLS => 'FALSE',
DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', COMPRESSION => 'NONE', MIN_VERSIONS => '', BLOCKCACHE =>
'true', BLOCKSIZE => '', REPLICATION_SCOPE => ''}
{NAME => 'cf1', BLOOMFILTER => 'ROW', VERSIONS => '', IN_MEMORY => 'false', KEEP_DELETED_CELLS => 'FALSE',
DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', COMPRESSION => 'NONE', MIN_VERSIONS => '', BLOCKCACHE =>
'true', BLOCKSIZE => '', REPLICATION_SCOPE => ''}
{NAME => 'cf2', BLOOMFILTER => 'ROW', VERSIONS => '', IN_MEMORY => 'false', KEEP_DELETED_CELLS => 'FALSE',
DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', COMPRESSION => 'NONE', MIN_VERSIONS => '', BLOCKCACHE =>
'true', BLOCKSIZE => '', REPLICATION_SCOPE => ''}
row(s) in 0.0810 seconds
hbase(main)::> desc 'RESULT'
Table RESULT is ENABLED
RESULT
COLUMN FAMILIES DESCRIPTION
{NAME => 'cf0', BLOOMFILTER => 'ROW', VERSIONS => '', IN_MEMORY => 'false', KEEP_DELETED_CELLS => 'FALSE',
DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', COMPRESSION => 'NONE', MIN_VERSIONS => '', BLOCKCACHE =>
'true', BLOCKSIZE => '', REPLICATION_SCOPE => ''}
row(s) in 0.0250 seconds

2、HBase shell插入数据

hbase(main)::> scan 'SDAS_Person'
ROW COLUMN+CELL
SDAS_1# column=cf0:Age, timestamp=, value=
SDAS_1# column=cf0:CompanyID, timestamp=, value=
SDAS_1# column=cf0:InDate, timestamp=, value=-- ::08.49
SDAS_1# column=cf0:Money, timestamp=, value=5.20
SDAS_1# column=cf0:Name, timestamp=, value=zhangsan
SDAS_1# column=cf0:PersonID, timestamp=, value=

3、pom.xml:

    <dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>

4、源码:

package com.zxth.sdas.spark.apps
import org.apache.spark._
import org.apache.spark.rdd.NewHadoopRDD
import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor}
import org.apache.hadoop.hbase.client.HBaseAdmin
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.mapreduce.Job
import org.apache.hadoop.hbase.client.Result
import org.apache.hadoop.hbase.mapreduce.TableOutputFormat object HBaseOp {
var total:Int = 0
def main(args: Array[String]) {
val sparkConf = new SparkConf().setAppName("HBaseOp").setMaster("local")
val sc = new SparkContext(sparkConf) val conf = HBaseConfiguration.create()
conf.set("hbase.zookeeper.quorum","master,slave1,slave2")
conf.set("hbase.zookeeper.property.clientPort", "2181")
conf.set(TableInputFormat.INPUT_TABLE, "SDAS_Person") //读取数据并转化成rdd
val hBaseRDD = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat],
classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],
classOf[org.apache.hadoop.hbase.client.Result]) val count = hBaseRDD.count()
println("\n\n\n:" + count)
hBaseRDD.foreach{case (_,result) =>{
//获取行键
val key = Bytes.toString(result.getRow)
//通过列族和列名获取列
var obj = result.getValue("cf0".getBytes,"Name".getBytes)
val name = if(obj==null) "" else Bytes.toString(obj) obj = result.getValue("cf0".getBytes,"Age".getBytes);
val age:Int = if(obj == null) 0 else Bytes.toString(obj).toInt total = total + age
println("Row key:"+key+" Name:"+name+" Age:"+age+" total:"+total)
}}
var average:Double = total.toDouble/count.toDouble
println("" + total + "/" + count + " average age:" + average.toString()) //write hbase
conf.set(TableOutputFormat.OUTPUT_TABLE, "RESULT")
val job = new Job(conf)
job.setOutputKeyClass(classOf[ImmutableBytesWritable])
job.setOutputValueClass(classOf[Result])
job.setOutputFormatClass(classOf[TableOutputFormat[ImmutableBytesWritable]]) var arrResult:Array[String] = new Array[String](1)
arrResult(0) = "1," + total + "," + average;
//arrResult(0) = "1,100,11" val resultRDD = sc.makeRDD(arrResult)
val saveRDD = resultRDD.map(_.split(',')).map{arr=>{
val put = new Put(Bytes.toBytes(arr(0)))
put.add(Bytes.toBytes("cf0"),Bytes.toBytes("total"),Bytes.toBytes(arr(1)))
put.add(Bytes.toBytes("cf0"),Bytes.toBytes("average"),Bytes.toBytes(arr(2)))
(new ImmutableBytesWritable, put)
}}
println("getConfiguration")
var c = job.getConfiguration()
println("save")
saveRDD.saveAsNewAPIHadoopDataset(c) sc.stop()
}
}

5、maven打包

mvn clean scala:compile compile package

6、提交运算

bin/spark-submit \
--jars $(echo /opt/hbase-1.2./lib/*.jar | tr ' ' ',') \
--class com.zxth.sdas.spark.apps.HBaseOp \
--master local \
sdas-spark-1.0.0.jar

Spark读写HBase的更多相关文章

  1. Spark读写Hbase的二种方式对比

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 一.传统方式 这种方式就是常用的TableInputFormat和TableOutputForm ...

  2. spark读写hbase性能对比

    一.spark写入hbase hbase client以put方式封装数据,并支持逐条或批量插入.spark中内置saveAsHadoopDataset和saveAsNewAPIHadoopDatas ...

  3. Spark读写HBase时出现的问题--RpcRetryingCaller: Call exception

    问题描述 Exception in thread "main" org.apache.hadoop.hbase.client.RetriesExhaustedException: ...

  4. Spark读写Hbase中的数据

    def main(args: Array[String]) { val sparkConf = new SparkConf().setMaster("local").setAppN ...

  5. Spark-读写HBase,SparkStreaming操作,Spark的HBase相关操作

    Spark-读写HBase,SparkStreaming操作,Spark的HBase相关操作 1.sparkstreaming实时写入Hbase(saveAsNewAPIHadoopDataset方法 ...

  6. Spark实战之读写HBase

    1 配置 1.1 开发环境: HBase:hbase-1.0.0-cdh5.4.5.tar.gz Hadoop:hadoop-2.6.0-cdh5.4.5.tar.gz ZooKeeper:zooke ...

  7. 使用 Spark SQL 高效地读写 HBase

    Apache Spark 和 Apache HBase 是两个使用比较广泛的大数据组件.很多场景需要使用 Spark 分析/查询 HBase 中的数据,而目前 Spark 内置是支持很多数据源的,其中 ...

  8. Spark读Hbase优化 --手动划分region提高并行数

    一. Hbase的region 我们先简单介绍下Hbase的架构和Hbase的region: 从物理集群的角度看,Hbase集群中,由一个Hmaster管理多个HRegionServer,其中每个HR ...

  9. 开源大数据技术专场(上午):Spark、HBase、JStorm应用与实践

    16日上午9点,2016云栖大会“开源大数据技术专场” (全天)在阿里云技术专家封神的主持下开启.通过封神了解到,在上午的专场中,阿里云高级技术专家无谓.阿里云技术专家封神.阿里巴巴中间件技术部高级技 ...

随机推荐

  1. ASP.Net Core "The type initializer for 'Gdip' threw an exception"

    ASP.NET Core项目部署在Linux下可能会出现GDI错误 The type initializer for 'Gdip' threw an exception 解决方案:创建 libdl 的 ...

  2. python 之路 day5 - 常用模块

    模块介绍 time &datetime模块 random os sys shutil json & picle shelve xml处理 yaml处理 configparser has ...

  3. angular 4 实战开发--安卓兼容问题(1)

    首先我强调下我只是个菜鸟,大神不喜勿喷. 先介绍下项目背景,主要是公司的官网h5 ,架构用的是angular4 有点大材小用的赶脚,but ,公司要求. 在项目主功能做的差不多了.交给测试,这时候发现 ...

  4. 高校表白APP-冲刺第一天

    今天我们开了第一次会议, 一.任务: 今日任务布局登录页面,注册页面,修改密码界面 明日任务完成基本的登录页面框架 二.遇到的困难: 布局文件里的一些标签,用法不清楚,页面跳转都得学习.

  5. Rman常用命令

    配置基于时间的备份保留策略 RMAN> CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 7 DAYS; 恢复spfile RMAN> re ...

  6. keras用法

    关于Keras的“层”(Layer) 所有的Keras层对象都有如下方法: layer.get_weights():返回层的权重(numpy array) layer.set_weights(weig ...

  7. 使用synchronized同步,经典银行账户问题

    1.新建Account类,使用synchronized同步增加和减少金额方法. package com.xkzhangsan.synchronizedpack.bank; public class A ...

  8. 泛型集合List的详细用法

    命名空间:   System.Collections.Generic List<T>类是 ArrayList 类的泛型等效类.    该类使用大小可 按需动态增加 的数组实现 IList& ...

  9. vector内存回收

    1. vector所有的内存相关问题都可以归结于它的内存增长策略.vector有一个特点就是:内存空间只会增长不会减少.vector有两个函数,一个是capacity(),返回对象缓冲区(vector ...

  10. Java 诊断工具 Arthas 教程学习笔记

    Java 诊断利器 Arthas,是阿里的一款开源工具.Github-alibaba/arthas 上可以看到它的介绍.了解它,主要是最近对分析 Java 错误堆栈比较感兴趣,机缘巧合看到了它. 本文 ...