逆元:

  同余方程 ax≡1(mod n),gcd(a,n) = 1 时有解,这时称求出的 x 为 a 的对模n的乘法逆元。(注意:如果gcd(a,n)如果不等于1则无解),解法还是利用扩展欧几里得算法求解方程 ax + ny = 1 求出 x。

     /**
* 求逆元
* ax = 1 (% mo),gcd(a,mo)=1
* ax+mo*y=1
* */
public static long inverseElement(long a, long mo) throws Exception { long d = linearEquation(a, mo, 1);//ax+mo*y=1
x = (x % mo + mo) % mo;//保证x>0
return d;
}

题目:HDU-1576

  

  思路:设(A/B)%9973 = k, 则A/B = k + 9973x  (x未知), 因此A = kB + 9973xB,又A%9973 = n, 所以kB%9973 = n,  故kB = n + 9973y (y未知),故(k/n)B +(-y/n)*9973 = gcd(B,9973) = 1扩展欧几里得 求出k/n,  再乘以个n,记得取模,就是answer了。

  代码:

 import java.util.Scanner;

 /**
* (A/B)%9973,求余,除法不满足交换性,可改为求B关于9973的逆元x,
* 这样结果等价于Ax%9973等价于x*A%9973等价于xn%9973,
*/ public class HDU1576 { public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int T = scanner.nextInt();
for (int i = 0; i < T; i++) {
int n = scanner.nextInt();
int b = scanner.nextInt();
try {
MyGcd.inverseElement(b, 9973);
long x = MyGcd.x;
System.out.println(x*n%9973);
} catch (Exception e) {
// TODO: handle exception
}
}
} private static class MyGcd{
static long x;
static long y; public static long gcd(long m, long n) {
return n == 0 ? m : gcd(n, m % n);
} public static long ext_gcd(long a,long b){
if (b==0) {
x = 1;
y = 0;
return a;
}
long res = ext_gcd(b, a % b);
long x1 = x;
x = y;
y = x1 - a / b * y;
return res;
} public static long linearEquation(long a, long b, long m) throws Exception {
long d = ext_gcd(a, b);
if (m % d != 0) {
throw new Exception("无解");
}
long n = m / d;
x *= n;
y *= n;
return d;
} public static long inverseElement(long a, long mo) throws Exception { long d = linearEquation(a, mo, 1);// ax+mo*y=1
x = (x % mo + mo) % mo;// 保证x>0
return d;
}
}
}

  结果:

    

 

【逆元】HDU-1576的更多相关文章

  1. hdu 1576 A/B

    原题链接:hdu 1576 A/B 同样是用扩展的欧几里得算法.A = 9973k+n = xB,从而转化为:xB-9973k=n求解x即可. 具体扩展欧几里得算法请参考:hdu 2669 Roman ...

  2. HDU 1576 (乘法逆元)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1576 题目大意:求(A/B)mod 9973.但是给出的A是mod形式n,n=A%9973. 解题思 ...

  3. hdu 1576 求逆元

    题意:给出n=A mod 9973和B,求(A/B) mod 9973 昨天用扩展欧几里得做过这题,其实用逆元也可以做. 逆元的定义:例如a*b≡1 (mod m),则b就是a关于m的逆元. 求逆元方 ...

  4. hdu 1576 A/B 【扩展欧几里得】【逆元】

    <题目链接> <转载于 >>> > A/B Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)( ...

  5. 题解报告:hdu 1576 A/B(exgcd、乘法逆元+整数快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n ...

  6. 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)

    题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...

  7. hdu 1576 A/B (求逆元)

    题目链接 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1).   Inpu ...

  8. hdu 1576(逆元)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. HDU 1576 A/B( 逆元水 )

    链接:传送门 思路: 现在给出 n = A % 9973,n = A - A/9973×9973,已知 B|A ,设 A = Bx,可以得到如下形式的式子:Bx + 9973×y = n ,因为gcd ...

  10. HDU 1576 A/B 数论水题

    http://acm.hdu.edu.cn/showproblem.php?pid=1576 写了个ex_gcd的模板...太蠢导致推了很久的公式 这里推导一下: 因为 1 = BX + 9973Y ...

随机推荐

  1. 以慕课网日志分析为例-进入大数据Spark SQL的世界

    下载地址.请联系群主 第1章 初探大数据 本章将介绍为什么要学习大数据.如何学好大数据.如何快速转型大数据岗位.本项目实战课程的内容安排.本项目实战课程的前置内容介绍.开发环境介绍.同时为大家介绍项目 ...

  2. 两条命令,实现ssh免密登陆

    ssh-keygenssh-copy-id -i 目标服务器ip

  3. UMeditor控制多张图片上传顺序

    多张图片上传的顺序,受到用户使用习惯.插件上传和插件插入页面顺序的影响. 估计是考虑到上传性能,官方没有提供UMeditor控制展示顺序的配置.在上传过程中,用户点击拖动的第一张图片,将作为文件数组中 ...

  4. 转导推理——Transductive Learning

    在统计学习中,转导推理(Transductive Inference)是一种通过观察特定的训练样本,进而预测特定的测试样本的方法.另一方面,归纳推理(Induction Inference)先从训练样 ...

  5. SQL Server 创建索引

    索引的简介: 索引分为聚集索引和非聚集索引,数据库中的索引类似于一本书的目录,在一本书中通过目录可以快速找到你想要的信息,而不需要读完全书. 索引主要目的是提高了SQL Server系统的性能,加快数 ...

  6. Flink写入kafka时,只写入kafka的部分Partitioner,无法写所有的Partitioner问题

    1. 写在前面 在利用flink实时计算的时候,往往会从kafka读取数据写入数据到kafka,但会发现当kafka多个Partitioner时,特别在P量级数据为了kafka的性能kafka的节点有 ...

  7. Docker使用Dockerfile构建Asp.Net Core镜像

    FROM microsoft/dotnet:2.2-aspnetcore-runtime AS base WORKDIR /app EXPOSE 80 FROM microsoft/dotnet:2. ...

  8. Linux版 php5.4 升级php7

    开篇 本操作是在VirtualBox里面进行的,所以开篇先说下,本地如何操作VB里面的Linux 1.secureCRT登陆虚拟机ubuntu 直接连接虚拟机的ip (ifconfig)会提示拒绝访问 ...

  9. Windows环境下应用Java代码操作Linux资源

    >>>>>>>>>>>>>>>>>>>>>>>>> ...

  10. 2018-2019-2 网络对抗技术 20165319 Exp2 后门原理与实践

    后门的基本概念及基础问题 后门程序就是留在计算机系统中,供某位特殊使用者通过某种特殊方式控制计算机系统的途径. [1] 后门程序,跟我们通常所说的"木马"有联系也有区别.联系在于: ...