【原创】大数据基础之Hive(1)Hive SQL执行过程之代码流程
hive 2.1
hive执行sql有两种方式:
- 执行hive命令,又细分为hive -e,hive -f,hive交互式;
- 执行beeline命令,beeline会连接远程thrift server;
下面分别看这些场景下sql是怎样被执行的:
1 hive命令
启动命令
启动hive客户端命令
$HIVE_HOME/bin/hive
等价于
$HIVE_HOME/bin/hive --service cli
会调用
$HIVE_HOME/bin/ext/cli.sh
实际启动类为:org.apache.hadoop.hive.cli.CliDriver
代码解析
org.apache.hadoop.hive.cli.CliDriver
public static void main(String[] args) throws Exception {
int ret = new CliDriver().run(args);
System.exit(ret);
} public int run(String[] args) throws Exception {
...
// execute cli driver work
try {
return executeDriver(ss, conf, oproc);
} finally {
ss.resetThreadName();
ss.close();
}
... private int executeDriver(CliSessionState ss, HiveConf conf, OptionsProcessor oproc)
throws Exception {
...
if (ss.execString != null) {
int cmdProcessStatus = cli.processLine(ss.execString);
return cmdProcessStatus;
}
...
try {
if (ss.fileName != null) {
return cli.processFile(ss.fileName);
}
} catch (FileNotFoundException e) {
System.err.println("Could not open input file for reading. (" + e.getMessage() + ")");
return 3;
}
...
while ((line = reader.readLine(curPrompt + "> ")) != null) {
if (!prefix.equals("")) {
prefix += '\n';
}
if (line.trim().startsWith("--")) {
continue;
}
if (line.trim().endsWith(";") && !line.trim().endsWith("\\;")) {
line = prefix + line;
ret = cli.processLine(line, true);
... public int processFile(String fileName) throws IOException {
...
rc = processReader(bufferReader);
... public int processReader(BufferedReader r) throws IOException {
String line;
StringBuilder qsb = new StringBuilder(); while ((line = r.readLine()) != null) {
// Skipping through comments
if (! line.startsWith("--")) {
qsb.append(line + "\n");
}
} return (processLine(qsb.toString()));
} public int processLine(String line, boolean allowInterrupting) {
...
ret = processCmd(command);
... public int processCmd(String cmd) {
...
CommandProcessor proc = CommandProcessorFactory.get(tokens, (HiveConf) conf);
ret = processLocalCmd(cmd, proc, ss);
... int processLocalCmd(String cmd, CommandProcessor proc, CliSessionState ss) {
int tryCount = 0;
boolean needRetry;
int ret = 0; do {
try {
needRetry = false;
if (proc != null) {
if (proc instanceof Driver) {
Driver qp = (Driver) proc;
PrintStream out = ss.out;
long start = System.currentTimeMillis();
if (ss.getIsVerbose()) {
out.println(cmd);
} qp.setTryCount(tryCount);
ret = qp.run(cmd).getResponseCode();
...
while (qp.getResults(res)) {
for (String r : res) {
out.println(r);
}
...
CliDriver.main会调用run,run会调用executeDriver,在executeDriver中对应上边提到的三种情况:
- 一种是hive -e执行sql,此时ss.execString非空,执行完进程退出;
- 一种是hive -f执行sql文件,此时ss.fileName非空,执行完进程退出;
- 一种是hive交互式执行sql,此时会不断读取reader.readLine,然后执行失去了并输出结果;
上述三种情况最终都会调用processLine,processLine会调用processLocalCmd,在processLocalCmd中会先调用到Driver.run执行sql,执行完之后再调用Driver.getResults输出结果,这也是Driver最重要的两个接口,Driver实现后边再看;
2 beeline命令
beeline需要连接到hive thrift server,先看hive thrift server如何启动:
hive thrift server
启动命令
启动hive thrift server命令
$HIVE_HOME/bin/hiveserver2
等价于
$HIVE_HOME/bin/hive --service hiveserver2
会调用
$HIVE_HOME/bin/ext/hiveserver2.sh
实际启动类为:org.apache.hive.service.server.HiveServer2
启动过程
HiveServer2.main
startHiveServer2
init
addService-CLIService,ThriftBinaryCLIService
start
Service.start
CLIService.start
ThriftBinaryCLIService.start
TThreadPoolServer.serve
类结构:【接口或父类->子类】
TServer->TThreadPoolServer
TProcessorFactory->SQLPlainProcessorFactory
TProcessor->TSetIpAddressProcessor
ThriftCLIService->ThriftBinaryCLIService
CLIService
HiveSession
代码解析
org.apache.hive.service.cli.thrift.ThriftBinaryCLIService
public ThriftBinaryCLIService(CLIService cliService, Runnable oomHook) {
super(cliService, ThriftBinaryCLIService.class.getSimpleName());
this.oomHook = oomHook;
}
ThriftBinaryCLIService是一个核心类,其中会实际启动thrift server,同时包装一个CLIService,请求最后都会调用底层的CLIService处理,下面看CLIService代码:
org.apache.hive.service.cli.CLIService
@Override
public OperationHandle executeStatement(SessionHandle sessionHandle, String statement,
Map<String, String> confOverlay) throws HiveSQLException {
OperationHandle opHandle =
sessionManager.getSession(sessionHandle).executeStatement(statement, confOverlay);
LOG.debug(sessionHandle + ": executeStatement()");
return opHandle;
} @Override
public RowSet fetchResults(OperationHandle opHandle, FetchOrientation orientation,
long maxRows, FetchType fetchType) throws HiveSQLException {
RowSet rowSet = sessionManager.getOperationManager().getOperation(opHandle)
.getParentSession().fetchResults(opHandle, orientation, maxRows, fetchType);
LOG.debug(opHandle + ": fetchResults()");
return rowSet;
}
CLIService最重要的两个接口,一个是executeStatement,一个是fetchResults,两个接口都会转发给HiveSession处理,下面看HiveSession实现类代码:
org.apache.hive.service.cli.session.HiveSessionImpl
@Override
public OperationHandle executeStatement(String statement, Map<String, String> confOverlay) throws HiveSQLException {
return executeStatementInternal(statement, confOverlay, false, 0);
} private OperationHandle executeStatementInternal(String statement,
Map<String, String> confOverlay, boolean runAsync, long queryTimeout) throws HiveSQLException {
acquire(true, true); ExecuteStatementOperation operation = null;
OperationHandle opHandle = null;
try {
operation = getOperationManager().newExecuteStatementOperation(getSession(), statement,
confOverlay, runAsync, queryTimeout);
opHandle = operation.getHandle();
operation.run();
...
@Override
public RowSet fetchResults(OperationHandle opHandle, FetchOrientation orientation,
long maxRows, FetchType fetchType) throws HiveSQLException {
acquire(true, false);
try {
if (fetchType == FetchType.QUERY_OUTPUT) {
return operationManager.getOperationNextRowSet(opHandle, orientation, maxRows);
}
return operationManager.getOperationLogRowSet(opHandle, orientation, maxRows, sessionConf);
} finally {
release(true, false);
}
}
可见
- HiveSessionImpl.executeStatement是调用ExecuteStatementOperation.run(ExecuteStatementOperation是Operation的一种)
- HiveSessionImpl.fetchResults是调用OperationManager.getOperationNextRowSet,然后会调用到Operation.getNextRowSet
org.apache.hive.service.cli.operation.OperationManager
public RowSet getOperationNextRowSet(OperationHandle opHandle,
FetchOrientation orientation, long maxRows)
throws HiveSQLException {
return getOperation(opHandle).getNextRowSet(orientation, maxRows);
}
下面写详细看Operation的run和getOperationNextRowSet:
org.apache.hive.service.cli.operation.Operation
public void run() throws HiveSQLException {
beforeRun();
try {
Metrics metrics = MetricsFactory.getInstance();
if (metrics != null) {
try {
metrics.incrementCounter(MetricsConstant.OPEN_OPERATIONS);
} catch (Exception e) {
LOG.warn("Error Reporting open operation to Metrics system", e);
}
}
runInternal();
} finally {
afterRun();
}
} public RowSet getNextRowSet() throws HiveSQLException {
return getNextRowSet(FetchOrientation.FETCH_NEXT, DEFAULT_FETCH_MAX_ROWS);
}
Operation是一个抽象类,
- run会调用抽象方法runInternal
- getNextRowSet会调用抽象方法getNextRowSet
下面会看到这两个抽象方法在子类中的实现,最终会依赖Driver的run和getResults;
1)先看runInternal在子类HiveCommandOperation中被实现:
org.apache.hive.service.cli.operation.HiveCommandOperation
@Override
public void runInternal() throws HiveSQLException {
setState(OperationState.RUNNING);
try {
String command = getStatement().trim();
String[] tokens = statement.split("\\s");
String commandArgs = command.substring(tokens[0].length()).trim(); CommandProcessorResponse response = commandProcessor.run(commandArgs);
...
这里会调用CommandProcessor.run,实际会调用Driver.run(Driver是CommandProcessor的实现类);
2)再看getNextRowSet在子类SQLOperation中被实现:
org.apache.hive.service.cli.operation.SQLOperation
public RowSet getNextRowSet(FetchOrientation orientation, long maxRows)
throws HiveSQLException {
...
driver.setMaxRows((int) maxRows);
if (driver.getResults(convey)) {
return decode(convey, rowSet);
}
...
这里会调用Driver.getResults;
3 Driver
通过上面的代码分析发现无论是hive命令行执行还是beeline连接thrift server执行,最终都会依赖Driver,
Driver最核心的两个接口:
- run
- getResults
代码解析
org.apache.hadoop.hive.ql.Driver
@Override
public CommandProcessorResponse run(String command)
throws CommandNeedRetryException {
return run(command, false);
} public CommandProcessorResponse run(String command, boolean alreadyCompiled)
throws CommandNeedRetryException {
CommandProcessorResponse cpr = runInternal(command, alreadyCompiled);
...
private CommandProcessorResponse runInternal(String command, boolean alreadyCompiled)
throws CommandNeedRetryException {
...
ret = compileInternal(command, true);
...
ret = execute(true);
...
private int compileInternal(String command, boolean deferClose) {
...
ret = compile(command, true, deferClose);
...
public int compile(String command, boolean resetTaskIds, boolean deferClose) {
...
plan = new QueryPlan(queryStr, sem, perfLogger.getStartTime(PerfLogger.DRIVER_RUN), queryId,
queryState.getHiveOperation(), schema);
...
public int execute(boolean deferClose) throws CommandNeedRetryException {
...
// Add root Tasks to runnable
for (Task<? extends Serializable> tsk : plan.getRootTasks()) {
// This should never happen, if it does, it's a bug with the potential to produce
// incorrect results.
assert tsk.getParentTasks() == null || tsk.getParentTasks().isEmpty();
driverCxt.addToRunnable(tsk);
}
...
// Loop while you either have tasks running, or tasks queued up
while (driverCxt.isRunning()) { // Launch upto maxthreads tasks
Task<? extends Serializable> task;
while ((task = driverCxt.getRunnable(maxthreads)) != null) {
TaskRunner runner = launchTask(task, queryId, noName, jobname, jobs, driverCxt);
if (!runner.isRunning()) {
break;
}
} // poll the Tasks to see which one completed
TaskRunner tskRun = driverCxt.pollFinished();
if (tskRun == null) {
continue;
}
hookContext.addCompleteTask(tskRun);
queryDisplay.setTaskResult(tskRun.getTask().getId(), tskRun.getTaskResult()); Task<? extends Serializable> tsk = tskRun.getTask();
TaskResult result = tskRun.getTaskResult();
...
if (tsk.getChildTasks() != null) {
for (Task<? extends Serializable> child : tsk.getChildTasks()) {
if (DriverContext.isLaunchable(child)) {
driverCxt.addToRunnable(child);
}
}
}
} public boolean getResults(List res) throws IOException, CommandNeedRetryException {
if (driverState == DriverState.DESTROYED || driverState == DriverState.CLOSED) {
throw new IOException("FAILED: query has been cancelled, closed, or destroyed.");
} if (isFetchingTable()) {
/**
* If resultset serialization to thrift object is enabled, and if the destination table is
* indeed written using ThriftJDBCBinarySerDe, read one row from the output sequence file,
* since it is a blob of row batches.
*/
if (fetchTask.getWork().isUsingThriftJDBCBinarySerDe()) {
maxRows = 1;
}
fetchTask.setMaxRows(maxRows);
return fetchTask.fetch(res);
}
...
- Driver的run会调用runInternal,runInternal中会先compileInternal编译sql并生成QueryPlan,然后调用execute执行QueryPlan中的所有task;
- Driver的getResults会调用FetchTask的fetch来获取结果;
Hive SQL解析过程详见: https://www.cnblogs.com/barneywill/p/10186644.html
【原创】大数据基础之Hive(1)Hive SQL执行过程之代码流程的更多相关文章
- 【原创】大数据基础之Spark(4)RDD原理及代码解析
一 简介 spark核心是RDD,官方文档地址:https://spark.apache.org/docs/latest/rdd-programming-guide.html#resilient-di ...
- CentOS6安装各种大数据软件 第八章:Hive安装和配置
相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础 ...
- 【原创】大数据基础之Benchmark(2)TPC-DS
tpc 官方:http://www.tpc.org/ 一 简介 The TPC is a non-profit corporation founded to define transaction pr ...
- 【原创】大数据基础之Zookeeper(2)源代码解析
核心枚举 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING; } zookeeper服务器状态:刚启动LOOKING,f ...
- 【原创】大数据基础之Hive(5)性能调优Performance Tuning
1 compress & mr hive默认的execution engine是mr hive> set hive.execution.engine;hive.execution.eng ...
- 【原创】大数据基础之Hive(2)Hive SQL执行过程之SQL解析过程
Hive SQL解析过程 SQL->AST(Abstract Syntax Tree)->Task(MapRedTask,FetchTask)->QueryPlan(Task集合)- ...
- 【原创】大数据基础之Hive(5)hive on spark
hive 2.3.4 on spark 2.4.0 Hive on Spark provides Hive with the ability to utilize Apache Spark as it ...
- 【原创】大数据基础之Hive(3)最简绿色部署
hadoop部署参考:https://www.cnblogs.com/barneywill/p/10428098.html 1 拷贝到所有服务器上并解压 # ansible all-servers - ...
- 了解大数据的技术生态系统 Hadoop,hive,spark(转载)
首先给出原文链接: 原文链接 大数据本身是一个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的.你能够把它比作一个厨房所以须要的各种工具. 锅碗瓢盆,各 ...
随机推荐
- 【原创】新说Mysql事务隔离级别
引言 大家在面试中一定碰到过 说说事务的隔离级别吧? 老实说,事务隔离级别这个问题,无论是校招还是社招,面试官都爱问!然而目前网上很多文章,说句实在话啊,我看了后我都怀疑作者弄懂没!因为他们对可重复读 ...
- 阿里面试题BIO和NIO数量问题附答案和代码
一.问题 BIO 和 NIO 作为 Server 端,当建立了 10 个连接时,分别产生多少个线程? 答案: 因为传统的 IO 也就是 BIO 是同步线程堵塞的,所以每个连接都要分配一个专用线程来处理 ...
- 爬虫基础(三)-----selenium模块应用程序
摆脱穷人思维 <三> : 培养"目标导向"的思维: 好项目永远比钱少,只要目标正确,钱总有办法解决. 一 selenium模块 什么是selenium?seleni ...
- input 各种限制
test 1.限制只能输入或黏贴11位长度的数字 <input onkeyup="this.value=this.value.replace(/\D/g,'')" onaft ...
- windows平台上用python 远程线程注入,执行shellcode
// 转自: https://blog.csdn.net/Jailman/article/details/77573990import sys import psutil import ctypes ...
- JS生成 UUID的方法
方法一. function uuid() { var s = []; var hexDigits = "0123456789abcdef"; for (var i = 0; i & ...
- 其它综合-企业级CentOS 7.6 操作系统的安装
企业级CentOS 7.6版本安装过程 1. 环境: 使用的虚拟机软件是VMware,版本为 12 .(网上一搜一大推,在此不再演示.) 使用的ISO镜像为CentOS7.6.(自己也可以在网上搜镜像 ...
- python之路5-函数
定义:函数是指将一组语句的集合通过一个名字(函数名)封装起来,要想执行这个函数,只需调用其函数名即可 特性: 减少重复代码 使程序变的可扩展 使程序变得易维护 def hello(): print(& ...
- DataTable转list时 可空类型的转换问题
public class UtilHelper { public static IList<T> ConvertTo<T>(DataTable table) { if (tab ...
- P4783 【模板】矩阵求逆
原题链接 https://www.luogu.org/problemnew/show/P4783 一道模板题,更重要的省选难度..... 题目要求的是一个n*n的逆矩阵,还要对大数取膜. 普通高中生: ...