前段时候由于项目的原因,需要画图,然后开始接触R语言的igraph包,网上零零散散的搜罗了不少的信息,放在这边交流分享的同时也给自己留个备份吧~

1.首先是读取文件,基本选用的都是csv文件

edge1<-read.csv("D:/9th_smj/onetimecut.csv",header=F)
vertex3<-read.csv("D:/9th_smj/vertex.csv",header=F)

2.设置变量的格式

edge1[,1]=as.character(edge1[,1])
edge1[,2]=as.character(edge1[,2])
edge1[,3]=as.character(edge1[,3])
edge1[,4]=as.character(edge1[,4])
edge<-edge1[c(1,3)]
vertex3[,1]=as.character(vertex3[,1])
vertex3[,2]=as.character(vertex3[,2])

  3.图构建

people = data.frame(id = vertex3[,1], name = vertex3[,2])

g=graph.data.frame(d=edge,direct=T,vertices=people)

  4.画图

png('D:/9th_smj/cuttoone.png',width=900,height=900)
set.seed(20)#设定种子节点,同一种布局画出来的图就是可以重复,不然即使同一种布局,展现的时候由于位置的随机也会呈现出不一样的结果
plot(g, layout = layout.fruchterman.reingold, vertex.size = V(g)$size+2,vertex.color=V(g)$color,vertex.label=V(g)$label,vertex.label.cex=1,edge.color = grey(0.5), edge.arrow.mode = "-",edge.arrow.size=5)
dev.off() 

  

针对plot函数的一些参数,特别解释下:

4.1  layout设置图的布局方式  

选项有:layout、layout.auto、layout.bipartite、layout.circle、layout.drl、layout.fruchterman.reingold、layout.fruchterman.reingold.grid、layout.graphopt、layout.grid、layout.grid.3d、layout.kamada.kawai、layout.lgl、layout.mds、layout.merge、layout.norm、layout.random、layout.reingold.tilford、layout.sphere、layout.spring、layout.star、layout.sugiyama、layout.svd

4.2  vertex.size设置节点的大小:不同节点不同大小

de<-read.csv("c:/degree-info.csv",header=F)
V(g)$deg<-de[,2]
V(g)$size=2
V(g)[deg>=1]$size=4
V(g)[deg>=2]$size=6
V(g)[deg>=3]$size=8
V(g)[deg>=4]$size=10
V(g)[deg>=5]$size=12
V(g)[deg>=6]$size=14

4.3  vertex.color设置节点的颜色:不同标记有不用的颜色

color<-read.csv("c:/color.csv",header=F)
col<-c("red","skyblue")
V(g)$color=col[color[,1]]

4.4  vertex.label设置节点的标记

V(g)$label=V(g)$name

vertex.label=V(g)$label

4.5  vertex.label.cex设置节点标记的字体大小

4.6  edge.color设置边的颜色:不同的边有不一样的颜色

E(g)$color="grey"
for(i in 1:length(pa3[,1])){
E(g,path=pa3[i,])$color="red"
}
edge.color=E(g)$color

4.7  edge.arrow.mode设置边的连接方式

4.8  edge.arrow.size设置箭头的大小

4.9  设置边的宽度

E(g)$width=1

 

5.聚类分析

感觉igraph包所提供的聚类算法还是很多的,将几种常用的列出,随后有时间的话再附上算法思想及参考文献

5.1  边的中介度聚类

system.time(ec <- edge.betweenness.community(g))
print(modularity(ec))
plot(ec, g,vertex.size=5,vertex.label=NA)

  

5.2  随机游走

system.time(wc <- walktrap.community(g))
print(modularity(wc))
#membership(wc)
plot(wc , g,vertex.size=5,vertex.label=NA)

  

5.3  特征值(个人理解觉得类似谱聚类)

system.time(lec <-leading.eigenvector.community(g))
print(modularity(lec))
plot(lec,g,vertex.size=5,vertex.label=NA)

  

5.4  贪心策略?

system.time(fc <- fastgreedy.community(g))
print(modularity(fc))
plot(fc, g,vertex.size=5,vertex.label=NA)

  

5.5  多层次聚类

system.time(mc <- multilevel.community(g, weights=NA))
print(modularity(mc))
plot(mc, g,vertex.size=5,vertex.label=NA)

  

5.6  标签传播

system.time(lc <- label.propagation.community(g))
print(modularity(lc))
plot(lc , g,vertex.size=5,vertex.label=NA)

  

6.文件输出

zz<-file("d:/test.txt","w")
cat(x,file=zz,sep="\n")
close(zz)

  

7.查看变量数据类型和长度

mode(x)
length(x)

  

R包igraph探究的更多相关文章

  1. R语言igraph 包-构建网络图

    igaph 是一个项目,目标是建立一条简单,易用的网络分析工具,有 R, python, C/C++ 等语言的具体实现: 项目主页: http://igraph.org/ 在R语言中,对应的就是 ig ...

  2. R包介绍

    R语言的使用,很大程度上是借助各种各样的R包的辅助,从某种程度上讲,R包就是针对于R的插件,不同的插件满足不同的需求,截至2013年3月6日,CRAN已经收录了各类包4338个. 一. R语言包的安装 ...

  3. R 包

    [下面列出每个步骤最有用的一些R包] .数据导入 以下R包主要用于数据导入和保存数据: feather:一种快速,轻量级的文件格式:在R和python上都可使用 readr:实现表格数据的快速导入 r ...

  4. R包MetaboAnalystR安装指南(Linux环境非root)

    前言 这是代谢组学数据分析的一个R包,包括用于代谢组学数据分析.可视化和功能注释等众多功能.最近有同事在集群中搭建蛋白和代谢流程,安装这个包出现了问题,于是我折腾了一上午. 这个包的介绍在:https ...

  5. 普通用户安装 R 包

    转自 http://bnuzhutao.cn/archives/901 一般 R 语言的书籍上,介绍安装 R 包的方法都是这样的: install.packages("packagename ...

  6. R(三): R包原理及安装

    包(package)是多个函数的集合,常作为分享代码的基本单元,代码封装成包可以方便其他用户使用.越来越多的R包正在由世界上不同的人所创建并分发,这些分发的R包,可以从CRAN 或 github 上获 ...

  7. 高质量、处于持续更新的R包

    本文在Creative Commons许可证下发布 自由软件的问题是开发人员没有稳定的资金来源支持,可能更新上做不到持续.经过考证和圈内朋友的帮助,现在把R包中高质量.持续更新的跟大数据事业相关的R包 ...

  8. 如何将R包安装到自定义路径

    参考  设置环境变量R_LIBS将R包安装到自定义路径   实际上是可以解决问题的, #环境变量完成以后,启动(重启)R,运行 .libPaths() 加载R包时,发现路径仍然未变成自定义的. 那么参 ...

  9. 工业级GBDT算法︱微软开源 的LightGBM(R包正在开发....)

    看完一篇介绍文章后,第一个直觉就是这算法已经配得上工业级属性.日前看到微软已经公开了这一算法,而且已经发开python版本,本人觉得等hadoop+Spark这些平台配齐之后,就可以大规模宣传啦~如果 ...

随机推荐

  1. Python简单练习

    #coding=UTF-8 a=10; b=2; c=a+b; print (c); score=90; if score>=80: print ("很好"); elif s ...

  2. [iOS]技巧集锦:UICollectionView内容下沉64像素原因和解决方案

    现象 UICollectionView的内容在按Home键再回到APP时,会下沉64像素. 原因 页面有NavigationBar,正好是64像素,Controller勾选了Adjust Scroll ...

  3. Android应用源码基于安卓的个人隐私监控项目

    本系统借鉴了现有安全软件的优点,设计了权限访问监控.流量监控.应用程序危险度监控和签名验证四个功能模块,同时针对现有安全软件的不足之处,对系统进行改进,让权限访问.流量监控.危险值等以图形化的方式呈现 ...

  4. Entity Framework 中使用SQL Server全文索引(Full Text Search)

    GitHub:https://github.com/fissoft/Fissoft.EntityFramework.Fts EntityFramework中原来使用全文索引有些麻烦,需要使用DbCon ...

  5. HADOOP HA切换后出现MSSING BLOCK

    HDFS HA切换后missing block问题分析 今天因为调整一个NN的参数,所以切换一个ACTIVE的NN,发生了MISSING BLOCK. 怀疑可能是EDITLOG没有同步完成,可能是误报 ...

  6. Microsoft Azure Point to Site VPN替代方案

    Microsoft Azure提供了Point to Site VPN,但有时候这并不能满足我们的需求,例如:Point to Site VPN是SSTP VPN,只能支持Window客户端拨入,而且 ...

  7. 三维等值面提取算法(Dual Contouring)

    上一篇介绍了Marching Cubes算法,Marching Cubes算法是三维重建算法中的经典算法,算法主要思想是检测与等值面相交的体素单元并计算交点的坐标,然后对不同的相交情况利用查找表在体素 ...

  8. 第一个JAVA应用

    1.1创建源文件 1.1.1Java源文件结构 Java应用由一个或多个扩展名为“.Java”的文件构成,这些文件被成为源文件.从编译角度,则被称为编译单元(Compilation Unit). 如果 ...

  9. NOI2001|POJ1182食物链[种类并查集 向量]

    食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 65430   Accepted: 19283 Description ...

  10. NOIP模拟赛20161023

    题目名 双色球 魔方 czy的后宫 mex 源文件 ball.cpp/c/pas cube.cpp/c/pas harem.cpp/c/pas mex.cpp/c/pas 输入文件 ball.in c ...