/
dp求期望的题。
题意:一个软件有s个子系统,会产生n种bug。
某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中。
求找到所有的n种bug,且每个子系统都找到bug,这样所要的天数的期望。
需要注意的是:bug的数量是无穷大的,所以发现一个bug,出现在某个子系统的概率是1/s,
属于某种类型的概率是1/n。
解法:
dp[i][j]表示已经找到i种bug,并存在于j个子系统中,要达到目标状态的天数的期望。
显然,dp[n][s]=0,因为已经达到目标了。而dp[0][0]就是我们要求的答案。
dp[i][j]状态可以转化成以下四种:
dp[i][j] 发现一个bug属于已经找到的i种bug和j个子系统中
dp[i+1][j] 发现一个bug属于新的一种bug,但属于已经找到的j种子系统
dp[i][j+1] 发现一个bug属于已经找到的i种bug,但属于新的子系统
dp[i+1][j+1]发现一个bug属于新的一种bug和新的一个子系统
以上四种的概率分别为:
p1 = i*j / (n*s)
p2 = (n-i)*j / (n*s)  //找到了 I 种 还剩下(n-I)
p3 = i*(s-j) / (n*s)
p4 = (n-i)*(s-j) / (n*s)
又有:期望可以分解成多个子期望的加权和,权为子期望发生的概率,即 E(aA+bB+...) = aE(A) + bE(B) +...
所以:
dp[i,j] = p1*dp[i,j] + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] + 1;
整理得:
dp[i,j] = ( 1 + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] )/( 1-p1 )
= ( n*s + (n-i)*j*dp[i+1,j] + i*(s-j)*dp[i,j+1] + (n-i)*(s-j)*dp[i+1,j+1] )/( n*s - i*j )

#include <cstdio>
#include <iostream> using namespace std; double dp[][]; int main()
{
int n, s, ns; cin >> n >> s;
ns = n*s;
dp[n][s] = 0.0;
for (int i = n; i >= ; i--)
for (int j = s; j >= ; j--)
{
if ( i == n && j == s ) continue;
dp[i][j] = ( ns + (n-i)*j*dp[i+][j] + i*(s-j)*dp[i][j+] + (n-i)*(s-j)*dp[i+][j+] )/( ns - i*j );
}
printf("%.4lf\n", dp[][]); return ;
}

Poj 2096 (dp求期望 入门)的更多相关文章

  1. POJ 2096 (dp求期望)

    A - Collecting Bugs Time Limit:10000MS     Memory Limit:64000KB     64bit IO Format:%I64d & %I64 ...

  2. HDU3853-LOOPS(概率DP求期望)

    LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Total Su ...

  3. hdu4035 Maze (树上dp求期望)

    dp求期望的题. 题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, 从结点1出发,开始走,在每个结点i都有3种可能: 1.被杀死,回到结点1处(概率为ki) 2.找到出口,走出迷宫 ...

  4. POJ2096 Collecting Bugs(概率DP,求期望)

    Collecting Bugs Ivan is fond of collecting. Unlike other people who collect post stamps, coins or ot ...

  5. HDU 3853 LOOP (概率DP求期望)

    D - LOOPS Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit St ...

  6. Poj 2096 Collecting Bugs (概率DP求期望)

    C - Collecting Bugs Time Limit:10000MS     Memory Limit:64000KB     64bit IO Format:%I64d & %I64 ...

  7. POJ 2096 Collecting Bugs 期望dp

    题目链接: http://poj.org/problem?id=2096 Collecting Bugs Time Limit: 10000MSMemory Limit: 64000K 问题描述 Iv ...

  8. POJ 2096 找bug 期望dp

    题目大意: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcompon ...

  9. loj 1038(dp求期望)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=25915 题意:求一个数不断地除以他的因子,直到变成1的时候 除的次 ...

随机推荐

  1. ACM学习历程—CodeForces 601A The Two Routes(最短路)

    题目链接:http://codeforces.com/problemset/problem/601/A 题目大意是有铁路和陆路两种路,而且两种方式走的交通工具不能在中途相遇. 此外,有铁路的地方肯定没 ...

  2. bzoj 2732: [HNOI2012]射箭 半平面交

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=2732 题解: 这道题的做法我不想说什么了... 其他题解都有说做法... 即使是我上午做 ...

  3. Poj1218_THE DRUNK JAILER(水题)

    一.Description A certain prison contains a long hall of n cells, each right next to each other. Each ...

  4. Ruby中的include

    Ruby中的include语句应注意以下两个问题: 1.include与文件无关.C语言中,#include预处理指令在编译期将一个文件的内容插入到另一个文件中.Ruby语句只是简单地产生一个指向指定 ...

  5. tomcat 自带jdk

    http://blog.csdn.net/b452608/article/details/70143466

  6. 在Action获取Scope对象

    引言:在前面的Action操作中,关键就是Action中的exectue方法,但是此方法并没有request.session.application等对象作为参数,自然就不能利用这些对象来操作.下面我 ...

  7. hbase java API跟新数据,创建表

    package hbaseCURD; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import o ...

  8. [xdoj1029]求解某个数的最高位和最低位

    解题关键: 1.最高位求法 long long int x=n^m; 式子两边同时取lg lg(x)=m*lg(n): x=10^(m*lg(n)): 10的整数次方的最高位一定是1,所以x的最高位取 ...

  9. 实现Unity对Dictionary的序列化

    若有尝试过想在unity的inspector检视面板中像List或者数组那样可以编辑Dictionary变量的童鞋应该知道,Dictionary变量不会出现在inspector中,unity并不会直接 ...

  10. Entity Framework Code-First(15):Cascade Delete

    Cascade Delete in Entity Framework Code-First: Cascade delete automatically deletes dependent record ...