Description

题目链接

Solution

容斥原理,答案为忽略质数限制的方案数减去不含质数的方案数

然后矩阵乘法优化一下DP即可

Code

#include <cstdio>
#include <algorithm>
#include <cstring>
#define N 120
using namespace std; const int MOD=20170408;
int n,m,p,pri[2000010],cnt[N],top;
bool vis[20000010]; struct info{
int A[N][N];
info(){for(int i=0;i<p;++i)for(int j=0;j<p;++j)A[i][j]=0;}
int *operator [](int x){return A[x];}
friend info operator *(info a,info b){
info c;
for(int i=0;i<p;++i)
for(int j=0;j<p;++j)
for(int k=0;k<p;++k)
c[i][j]=(c[i][j]*1ll+1ll*a[i][k]*b[k][j]%MOD)%MOD;
return c;
}
}t1,t2,g; inline info Pow(info A,int c){
info res;
for(int i=0;i<p;++i) res[i][i]=1;
for(;c;c>>=1,A=A*A) if(c&1) res=res*A;
return res;
} int main(){
scanf("%d%d%d",&n,&m,&p);
vis[1]=1;
for (int i=2;i<=m;i++){
if (!vis[i])pri[++top]=i;
for (int j=1;j<=top&&i*1ll*pri[j]<=m;j++){
vis[i*pri[j]]=1;
if(i%pri[j]==0)break;
}
}
for(int i=1;i<=m;++i) cnt[i%p]++;
for(int i=0;i<p;++i)for(int j=0;j<p;++j)g[i][j]=cnt[(i-j+p)%p];
t1[0][0]=t2[0][0]=1;
t1=t1*Pow(g,n);
memset(cnt,0,sizeof(cnt));
for(int i=1;i<=m;++i) if(vis[i]) cnt[i%p]++;
for(int i=0;i<p;++i)for(int j=0;j<p;++j)g[i][j]=cnt[(i-j+p)%p];
t2=t2*Pow(g,n);
printf("%d\n",(t1[0][0]-t2[0][0]+MOD)%MOD);
return 0;
}

[Bzoj4818]序列计数(矩阵乘法+DP)的更多相关文章

  1. 【BZOJ4818】【SDOI2017】序列计数 [矩阵乘法][DP]

    序列计数 Time Limit: 30 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Alice想要得到一个长度为n的序 ...

  2. 【bzoj4818】[Sdoi2017]序列计数 矩阵乘法

    原文地址:http://www.cnblogs.com/GXZlegend/p/6825132.html 题目描述 Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的 ...

  3. [BZOJ 4818/LuoguP3702][SDOI2017] 序列计数 (矩阵加速DP)

    题面: 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4818 Solution 看到这道题,我们不妨先考虑一下20分怎么搞 想到暴力,本蒟 ...

  4. [Sdoi2017]序列计数 矩阵优化dp

    题目 https://www.lydsy.com/JudgeOnline/problem.php?id=4818 思路 先考虑没有质数限制 dp是在同余系下的,所以\(f[i][j]\)表示前i个点, ...

  5. BZOJ 4818 [Sdoi2017]序列计数 ——矩阵乘法

    发现转移矩阵是一个循环矩阵. 然后循环矩阵乘以循环矩阵还是循环矩阵. 据说还有FFT并且更优的做法. 之后再看吧 #include <map> #include <cmath> ...

  6. luogu 3702 [SDOI2017]序列计数 矩阵乘法+容斥

    现在看来这道题真的不难啊~ 正着求不好求,那就反着求:答案=总-全不是质数 这里有一个细节要特判:1不是质数,所以在算全不是质数的时候要特判1 code: #include <bits/stdc ...

  7. Codevs 1305 Freda的道路(矩阵乘法 DP优化)

    1305 Freda的道路 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description Freda要到Rainbow的城堡去玩了.我们可以认 ...

  8. bzoj 4818: [Sdoi2017]序列计数【容斥原理+dp+矩阵乘法】

    被空间卡的好惨啊---- 参考:http://blog.csdn.net/coldef/article/details/70305596 容斥,\( ans=ans_{没有限制}-ans{没有质数} ...

  9. Luogu3702 SDOI2017 序列计数 矩阵DP

    传送门 不考虑质数的条件,可以考虑到一个很明显的$DP:$设$f_{i,j}$表示选$i$个数,和$mod\ p=j$的方案数,显然是可以矩阵优化$DP$的. 而且转移矩阵是循环矩阵,所以可以只用第一 ...

随机推荐

  1. div多选控制

    此点击按钮,弹出DIV,div内容可以多项选择,点击确定,被选项回填至文本框.功能类似之前写过的一篇日期多选,不过是在其基础上,新增点击页面其他区域,隐藏div功能. 1.css部分代码 .multi ...

  2. django定时任务小插件

    需求 每天请求一封邮件,并读取该邮件 这个其实可以使用linux 自带了crontab实现,但是毕竟是django 开发.想着不知道有没有方法可以从django 中实现. 简单搜索了下,这方面的方法确 ...

  3. make知识

    makelist 语法 https://cmake.org/cmake/help/v3.10/manual/cmake-language.7.html CMakeLists.txt I am of t ...

  4. java——类加载机制

    类加载机制 JVM把class文件加载的内存,并对数据进行校验.转换解析和初始化,最终形成JVM可以直接使用的Java类型的过程就是加载机制. 类从被加载到虚拟机内存中开始,到卸载出内存为止,它的生命 ...

  5. ffmpeg 安装和参数介绍

    0.说明: 1).configure,这一步一般用来生成 Makefile,为下一步的编译做准备,你可以通过在 configure 后加上参数来对安装进行控制,比如代码:./configure –pr ...

  6. 如何在windows下运行Linux命令?(转载)

    在windows上可以运行或使用linux下面的命令吗?可以,小编今天就来分享怎么样让Windows支持Linux命令,做这些安装和设置后,就可以非常方便的在windows系统中使用linux下面的命 ...

  7. PHP @ at 记号的作用

    看PHP的代码,总有些行前边有@符号,一直不知道是什么意思. 例如dede5.7     @$ni=imagecreatetruecolor($ftoW,$ftoH); 今天用到了,就记一下吧.其实它 ...

  8. for循环研究

    for循环和递归是算法设计的重要结构之一: 两者具有相同的设计准则: 1.范围:开始和结束条件: 2.步增条件: 两者都用来处理顺序数据结构和计数计算: 递归也用于分而治之: for循环用于线性扫描: ...

  9. Edmonds-Karp算法,最大流POJ(1459)

    题目链接:http://poj.org/problem?id=1459 解题报告: 电力调度站不涉及流的产生和消耗,不用考虑,Edmonds-Karp算法,就是利用剩余网络和增广路来解决,网络中的最大 ...

  10. 计算最大矩形面积,POJ(2082)

    题目链接:http://poj.org/problem?id=2082 把矩形按照高度一次递增的循序排列,当违反这一规则的时候,更新ans,用新的data替换之前的矩形.然后最后扫一遍. #inclu ...