uva1214 Manhattan Wiring 插头DP
There is a rectangular area containing n × m cells. Two cells are marked with “2”, and another two with “3”. Some cells are occupied by obstacles. You should connect the two “2”s and also the two “3”s with non-intersecting lines. Lines can run only vertically or horizontally connecting centers of cells without obstacles.
Lines cannot run on a cell with an obstacle. Only one line can run on a cell at most once. Hence, a line cannot intersect with the other line, nor with itself. Under these constraints, the total length of the two lines should be minimized. The length of a line is defined as the number of cell borders it passes. In particular, a line connecting cells sharing their border has length 1.
Fig. 1(a) shows an example setting. Fig. 1(b) shows two lines satisfying the constraints above with minimum total length 18.
Figure 1: An example of setting and its solution
Input
The input consists of multiple datasets, each in the following format.
n m row1 … rown
n is the number of rows which satisfies 2 ≤ n ≤ 9. m is the number of columns which satisfies 2 ≤ m ≤ 9. Each rowi is a sequence of m digits separated by a space. The digits mean the following.
0:
Empty
1:
Occupied by an obstacle
2:
Marked with “2”
3:
Marked with “3”
The end of the input is indicated with a line containing two zeros separated by a space.
Output
For each dataset, one line containing the minimum total length of the two lines should be output. If there is no pair of lines satisfying the requirement, answer “0
” instead. No other characters should be contained in the output.
题解:https://wenku.baidu.com/view/e5314c16bcd126fff7050bf7.html?from=search
Sample Input
5 5
0 0 0 0 0
0 0 0 3 0
2 0 2 0 0
1 0 1 1 1
0 0 0 0 3
2 3
2 2 0
0 3 3
6 5
2 0 0 0 0
0 3 0 0 0
0 0 0 0 0
1 1 1 0 0
0 0 0 0 0
0 0 2 3 0
5 9
0 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0
0 2 0 0 0 0 0 2 0
0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 0 0
9 9
3 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 3
9 9
0 0 0 1 0 0 0 0 0
0 2 0 1 0 0 0 0 3
0 0 0 1 0 0 0 0 2
0 0 0 1 0 0 0 0 3
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
9 9
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 3 2
0 0
Sample Output
18
2
17
12
0
52
43
uva1214 Manhattan Wiring 插头DP的更多相关文章
- [Poj3133]Manhattan Wiring (插头DP)
Description 题目大意:给你个N x M(1≤N, M≤9)的矩阵,0表示空地,1表示墙壁,2和3表示两对关键点.现在要求在两对关键点之间建立两条路径,其中两条路径不可相交或者自交(就是重复 ...
- POJ 3133 Manhattan Wiring (插头DP,轮廓线,经典)
题意:给一个n*m的矩阵,每个格子中有1个数,可能是0或2或3,出现2的格子数为2个,出现3的格子数为2个,要求将两个2相连,两个3相连,求不交叉的最短路(起终点只算0.5长,其他算1). 思路: 这 ...
- 插头DP专题
建议入门的人先看cd琦的<基于连通性状态压缩的动态规划问题>.事半功倍. 插头DP其实是比较久以前听说的一个东西,当初是水了几道水题,最近打算温习一下,顺便看下能否入门之类. 插头DP建议 ...
- 「总结」插头$dp$
集中做完了插头$dp$ 写一下题解. 一开始学的时候还是挺蒙的. 不过后来站在轮廓线$dp$的角度上来看就简单多了. 其实就是一种联通性$dp$,只不过情况比较多而已了. 本来转移方式有两种.逐行和逐 ...
- [入门向选讲] 插头DP:从零概念到入门 (例题:HDU1693 COGS1283 BZOJ2310 BZOJ2331)
转载请注明原文地址:http://www.cnblogs.com/LadyLex/p/7326874.html 最近搞了一下插头DP的基础知识……这真的是一种很锻炼人的题型…… 每一道题的状态都不一样 ...
- poj3133 Manhattan Wiring
Manhattan Wiring Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 2016 Accepted: 1162 ...
- [LA3620]Manhattan Wiring
[LA3620]Manhattan Wiring 试题描述 输入 输出 输入示例 输出示例 数据规模及约定 见“输入” 题解 我们把“连线”的过程改为“铺地砖”的过程,总共有 11 种地砖,每种地砖上 ...
- 「插头dp」
Tasklist: 标识设计 神奇游乐园 Manhattan Wiring ParkII 游览计划 CITY: 只用一条回路经过所有可通过的块 括号匹配,注意结束位置不一定是(n,m) 地板: 分已经 ...
- 插头dp
插头dp 感受: 我觉得重点是理解,算法并不是直接想出怎样由一种方案变成另一种方案.而是方案本来就在那里,我们只是枚举状态统计了答案. 看看cdq的讲义什么的,一开始可能觉得状态很多,但其实灰常简单 ...
随机推荐
- linux redis5.0 集群搭建
一.下载 wget http://download.redis.io/releases/redis-5.0.0.tar.gz 二.解压.编译 #解押到 /usr/local/ 文件夹 tar -zxv ...
- php扩展开发-INI配置
php.ini文件是用来保存各项扩展配置的文件,每个扩展都或多或少需要有一个定制化的配置,ini文件是一个很好的保存配置的方式,我们来看下怎么在自己的扩展里,使用到ini的配置功能 //创建ini的配 ...
- 虚拟机桥接模式下多台Ubuntu16.04系统互相连接
1.首先新建一个虚拟机并在该虚拟机上安装Ubuntu16.04系统.为这台虚拟机起名为Ubuntu3. 2.对Ubuntu3进行克隆,为新克隆生成的虚拟机起名为Ubuntu2.(这时我们会发现Ubun ...
- python学习之循环语句
编程语言中的循环语句,以循环判断达式是否成立为条件,若表达式成立则循环执行该表达式,若不成立则跳出当前执行执行语句且继续执行其后代码. 如下图所示. Python中提供以下循环方式 循环类型 描述 w ...
- CF961E Tufurama 树状数组
E. Tufurama One day Polycarp decided to rewatch his absolute favourite episode of well-known TV seri ...
- vim+软件安装——06
vim在命令模式下的操作: 1.上下左右键可以自由走动 2.l 键 光标向右移动一个位置 3.h键 光标向左移动一个位置 4.j键 光标向下移动一行 5.k键 光标向上移动一行 6.^键 光标移动到当 ...
- Java线程和多线程(八)——Thread Dump
Java的Thread Dump就是列出JVM中所有激活状态的线程. Java Thread Dump Java Thread Dump在分析应用性能瓶颈和死锁的时候,是非常有效的. 下面将介绍多种不 ...
- 1082: [SCOI2005]栅栏
链接 思路 二分+搜索+剪枝. 首先二分一个答案,表示最多可以切出x块.(一个结论:切出的一定是从较小的前x块.如果一个木材可以满足很多个需要的木材,那么切出最小的,就意味着以后再选时的机会更多.) ...
- java线上编程网站
自带测试 http://codingbat.com/prob/p145416
- Jenkins拾遗--第五篇-git插件填坑
Jenkins使用过程中,大部分Job的第一项就行从源码库里签出代码.由于git越来越流行,所以,稍微新一些的项目的源码管理都是基于git的.对应的,jenkins的git plugin几乎是大部分j ...