uva1214 Manhattan Wiring 插头DP
There is a rectangular area containing n × m cells. Two cells are marked with “2”, and another two with “3”. Some cells are occupied by obstacles. You should connect the two “2”s and also the two “3”s with non-intersecting lines. Lines can run only vertically or horizontally connecting centers of cells without obstacles.
Lines cannot run on a cell with an obstacle. Only one line can run on a cell at most once. Hence, a line cannot intersect with the other line, nor with itself. Under these constraints, the total length of the two lines should be minimized. The length of a line is defined as the number of cell borders it passes. In particular, a line connecting cells sharing their border has length 1.
Fig. 1(a) shows an example setting. Fig. 1(b) shows two lines satisfying the constraints above with minimum total length 18.
Figure 1: An example of setting and its solution
Input
The input consists of multiple datasets, each in the following format.
n m row1 … rown
n is the number of rows which satisfies 2 ≤ n ≤ 9. m is the number of columns which satisfies 2 ≤ m ≤ 9. Each rowi is a sequence of m digits separated by a space. The digits mean the following.
0:Empty
1:Occupied by an obstacle
2:Marked with “2”
3:Marked with “3”
The end of the input is indicated with a line containing two zeros separated by a space.
Output
For each dataset, one line containing the minimum total length of the two lines should be output. If there is no pair of lines satisfying the requirement, answer “0” instead. No other characters should be contained in the output.
题解:https://wenku.baidu.com/view/e5314c16bcd126fff7050bf7.html?from=search
Sample Input
5 5
0 0 0 0 0
0 0 0 3 0
2 0 2 0 0
1 0 1 1 1
0 0 0 0 3
2 3
2 2 0
0 3 3
6 5
2 0 0 0 0
0 3 0 0 0
0 0 0 0 0
1 1 1 0 0
0 0 0 0 0
0 0 2 3 0
5 9
0 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0
0 2 0 0 0 0 0 2 0
0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 0 0
9 9
3 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 3
9 9
0 0 0 1 0 0 0 0 0
0 2 0 1 0 0 0 0 3
0 0 0 1 0 0 0 0 2
0 0 0 1 0 0 0 0 3
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
9 9
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 3 2
0 0
Sample Output
18
2
17
12
0
52
43
uva1214 Manhattan Wiring 插头DP的更多相关文章
- [Poj3133]Manhattan Wiring (插头DP)
Description 题目大意:给你个N x M(1≤N, M≤9)的矩阵,0表示空地,1表示墙壁,2和3表示两对关键点.现在要求在两对关键点之间建立两条路径,其中两条路径不可相交或者自交(就是重复 ...
- POJ 3133 Manhattan Wiring (插头DP,轮廓线,经典)
题意:给一个n*m的矩阵,每个格子中有1个数,可能是0或2或3,出现2的格子数为2个,出现3的格子数为2个,要求将两个2相连,两个3相连,求不交叉的最短路(起终点只算0.5长,其他算1). 思路: 这 ...
- 插头DP专题
建议入门的人先看cd琦的<基于连通性状态压缩的动态规划问题>.事半功倍. 插头DP其实是比较久以前听说的一个东西,当初是水了几道水题,最近打算温习一下,顺便看下能否入门之类. 插头DP建议 ...
- 「总结」插头$dp$
集中做完了插头$dp$ 写一下题解. 一开始学的时候还是挺蒙的. 不过后来站在轮廓线$dp$的角度上来看就简单多了. 其实就是一种联通性$dp$,只不过情况比较多而已了. 本来转移方式有两种.逐行和逐 ...
- [入门向选讲] 插头DP:从零概念到入门 (例题:HDU1693 COGS1283 BZOJ2310 BZOJ2331)
转载请注明原文地址:http://www.cnblogs.com/LadyLex/p/7326874.html 最近搞了一下插头DP的基础知识……这真的是一种很锻炼人的题型…… 每一道题的状态都不一样 ...
- poj3133 Manhattan Wiring
Manhattan Wiring Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 2016 Accepted: 1162 ...
- [LA3620]Manhattan Wiring
[LA3620]Manhattan Wiring 试题描述 输入 输出 输入示例 输出示例 数据规模及约定 见“输入” 题解 我们把“连线”的过程改为“铺地砖”的过程,总共有 11 种地砖,每种地砖上 ...
- 「插头dp」
Tasklist: 标识设计 神奇游乐园 Manhattan Wiring ParkII 游览计划 CITY: 只用一条回路经过所有可通过的块 括号匹配,注意结束位置不一定是(n,m) 地板: 分已经 ...
- 插头dp
插头dp 感受: 我觉得重点是理解,算法并不是直接想出怎样由一种方案变成另一种方案.而是方案本来就在那里,我们只是枚举状态统计了答案. 看看cdq的讲义什么的,一开始可能觉得状态很多,但其实灰常简单 ...
随机推荐
- linux命令讲解
1.vi命令 1.光标移动到文件的最后一行 G :$ ]] 2.光标移动到文件的第一行 :0 gg [[ 3.从光标所在位置将光标移动到当前行的开头 0 ^ ...
- Vue项目部署遇到的问题及解决方案
写在前面 Vue-Router 有两种模式,默认是 hash 模式,另外一种是 history 模式. hash:也就是地址栏里的 # 符号.比如 http://www.example/#/hello ...
- 【整理】PHP获取客户端真实IP地址详解
php获取客户端IP地址有四种方法,这五种方法分别为REMOTE_ADDR.HTTP_CLIENT_IP.HTTP_X_FORWARDED_FOR.HTTP_VIA. REMOTE_ADDR 是你的客 ...
- datetime模块及time模块
pyhton的datetime模块分析(小女子的测试之路):https://www.cnblogs.com/cindy-cindy/p/6720196.html python时间模块小结(time a ...
- Huffman Tree -- Huffman编码
#include <stdlib.h> #include <stdio.h> #include <string.h> typedef struct HuffmanT ...
- 17-比赛1 D - IPC Trainers (贪心 + 优先队列)
题目描述 本次印度编程训练营(Indian Programming Camp,IPC)共请到了 N 名教练.训练营的日程安排有 M 天,每天最多上一节课.第 i 名教练在第 Di 天到达,直到训练营结 ...
- scala初体验-02
上一节,我们讲了scala的安装的即一些初步方法,今天,我们来介绍一下scala里面的一些基本操作 1.对于map的的编写,这个是广泛用于Array里面的 val arr = Array(1,2,3, ...
- java练习题——字符串
一.动手动脑之String.equals()方法: 判断s1和s2的内容相同s1.equals(s2). 判断s1和s2的地址相同s1 == s2. 二.整理String类的Length().char ...
- windows禁用/启用hyper-V,解决hyper-V与模拟器同时启用时造成冲突
- 直接插入排序&希尔排序
1.直接插入排序 时间复杂度O(n2) 工作原理: 通过构建有序序列,对于未排序数据,在已排序的序列中,从后向前扫描,找到相应的位置并插入. 插入排序在实现上,在从后向前扫描的过程中,需要反复把已排序 ...