还是挺妙的。

发现对于一个$r$行$c$列的矩阵,穿过的格子数$n = r + c - gcd(r, c)$,题目中其实给定了这个$n$,要我们计算满足这个式子的$r$和$c$的个数。

发现$n$一定要是$gcd(r, c)$的倍数,等式两边可以除掉这个$gcd(r, c)$,变成$n' = r' + c' - 1$。

那么这时候$gcd(r', c') = gcd(n' + 1 - r', c') = 1$。

根据辗转相减法,有$gcd(n' + 1, c') = 1$,而满足这个式子的$c'$的个数恰好是$\varphi (n' + 1)$。

于是可以开心地计算出$c'$的总数$sum = \sum_{d|n} \varphi (d + 1)$。

注意到这时$(n, n)$这一对数只算了一遍,所以最后的答案$ans = (sum + 1) / 2$。

线性筛一波就好啦,时间复杂度$O(n)$。

Code:

#include <cstdio>
#include <cstring>
using namespace std; const int N = 1e6 + ; int n, pCnt = , ans = , pri[N], phi[N];
bool np[N]; inline void sieve() {
phi[] = ;
for(int i = ; i <= n + ; i++) {
if(!np[i]) pri[++pCnt] = i, phi[i] = i - ;
for(int j = ; j <= pCnt && i * pri[j] <= n + ; j++) {
np[i * pri[j]] = ;
if(i % pri[j] == ) {
phi[i * pri[j]] = phi[i] * pri[j];
break;
}
phi[i * pri[j]] = phi[i] * phi[pri[j]];
}
}
} int main() {
scanf("%d", &n);
sieve();
for(int i = ; i <= n; i++)
if(n % i == ) ans += phi[i + ];
printf("%d\n", (ans + ) / );
return ;
}

Luogu 4388 付公主的矩形的更多相关文章

  1. P4388 付公主的矩形(gcd+欧拉函数)

    P4388 付公主的矩形 前置芝士 \(gcd\)与欧拉函数 要求对其应用于性质比较熟,否则建议左转百度 思路 有\(n×m\)的矩阵,题目要求对角线经过的格子有\(N\)个, 设函数\(f(x,y) ...

  2. luogu4388 付公主的矩形

    题面: 为了排解心中的怒气,她造了大量的稻草人来发泄.每天付公主都会把一些稻草人摆成一个R∗C的矩形,矩形的每个方格上都有一个稻草人.然后她站在这个矩形的左上角,向矩形的右下角射箭.付公主的箭术过人, ...

  3. [洛谷P4388] 付公主的矩形

    18.09.09模拟赛T1. 一道数学题. 题目传送门 首先把对角线当成是某个点的移动轨迹,从左下到右上. 那么这个点每上升一个单位长度,就穿过一个格子. 每右移一个单位长度,也会穿过一个格子. 例外 ...

  4. luogu P4389 付公主的背包

    传送门 神仙题鸭!orz dkw 暴力就是完全背包 而完全背包可以和生成函数扯上关系,记第i种物品质量为\(a_i\),那么这种物品的生成函数\(G(i)=\sum_{j=0}^{\infty}x^{ ...

  5. [luogu 4389] 付公主的背包

    题意:求一个较大的多重背包对于每个i的方案数,答案对998244353取模. 思路: 生成函数: 对于一个\(V\) 设: \(f(x) = \sum_{i=0}^{oo} x ^ {V * i} = ...

  6. 洛谷 P4389 付公主的背包 解题报告

    P4389 付公主的背包 题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装\(10^5\)大小的东西 付公主有\(n\)种商品,她要准备出摊了 每种商品体积为\(V_i\),都有\ ...

  7. LuoguP4389 付公主的背包【生成函数+多项式exp】

    题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装10^5105大小的东西 付公主有n种商品,她要准备出摊了 每种商品体积为Vi,都有10^5105件 给定m,对于s\in [1,m ...

  8. 洛谷 4389 付公主的背包——多项式求ln、exp

    题目:https://www.luogu.org/problemnew/show/P4389 关于泰勒展开: https://blog.csdn.net/SoHardToNamed/article/d ...

  9. luoguP4389 付公主的背包

    luogu 显然这是个背包题 显然物品的数量是不用管的 所以考虑大小为\(v\)的物品可以装的体积用生成函数表示一下 \[ f(x)=\sum_{i=0}^{+\infty}x^{vi}=\frac{ ...

随机推荐

  1. uva10892(暴力枚举)

    把n的所有因子求出来,总数不会太多,所以直接O(n2)的暴力枚举所有对行不行. 有几个细节要注意,详见代码. #include<iostream> #include<cstdio&g ...

  2. UVALive - 3521 Joseph's Problem (整除分块)

    给定$n,k$$(1\leqslant n,k\leqslant 10^9)$,计算$\sum\limits _{i=1}^nk\: mod\:i$ 通过观察易发现$k\%i=k-\left \lfl ...

  3. Loadrunner-场景设置以及监控结果分析

    一.Controller的基本工作原理:通过1.2.3设置来模拟用户的操作,收集出4的各种信息 二.场景设置一般步骤 1.新建场景(Controller) 2.添加脚本 3.设置Schedule(设置 ...

  4. 异常java.sql.SQLException: Field 'id' doesn't have a default value

    使用spring data jpa出现这个情况. entity中的自增策略已经加好了. 还是出现这个异常.去数据库中查看,发现没有给主键加上自增. 出现这个问题去实体类跟数据库中看一下就可以了.

  5. docker镜像的导入和导出

    启动命令 docker run -d -p 3000:80 twang2218/gitlab-ce-zh:9.0.3 docker run -d -p 8080:80 gitlab/gitlab-ce ...

  6. file“xxxxx”has modification times xxxxx s in the future..

    这是因为一个项目从一个电脑拷贝的到另一个电脑上时,两个电脑的时钟不一致所致,修改一下项目所在目录的修改时间即可: find /your/dir -type f -exec touch {} + 也可以 ...

  7. Oracle导出导入

    导出 exp 用户名/密码 file=文件名.dmp full=y; 导入 imp 用户名/密码 file=文件名.dmp full=y; 使用EXPDP和IMPDP时应该注意的事项: EXP和IMP ...

  8. centos 虚拟机联网

    在windows主机安装centos虚拟机后,遇到虚拟机连接外网问题. 解决方案:http://blog.csdn.net/pang040328/article/details/12427359 经过 ...

  9. pushd,popd,dirs,cd -让切换目录更方便

    与linux cd命令相似,用pushd实现在不同目录间切换 在命令行模式下,当你工作在不同目录中,你将发现你有很多时间都浪费在重复输入上如果这些目录不在同一个根目录中,你不得不在转换时输入完整的路径 ...

  10. throw和throws的区别和联系

    突然发现今天诗兴大发,看来又得写点内容了. throw和throws对于Java程序员而言它们真的不是很陌生.但对于我这样的选手而言一提到它们的区别和联系就蒙圈了... 为了以后不蒙圈,今天就研究一下 ...