Luogu 4388 付公主的矩形
还是挺妙的。
发现对于一个$r$行$c$列的矩阵,穿过的格子数$n = r + c - gcd(r, c)$,题目中其实给定了这个$n$,要我们计算满足这个式子的$r$和$c$的个数。
发现$n$一定要是$gcd(r, c)$的倍数,等式两边可以除掉这个$gcd(r, c)$,变成$n' = r' + c' - 1$。
那么这时候$gcd(r', c') = gcd(n' + 1 - r', c') = 1$。
根据辗转相减法,有$gcd(n' + 1, c') = 1$,而满足这个式子的$c'$的个数恰好是$\varphi (n' + 1)$。
于是可以开心地计算出$c'$的总数$sum = \sum_{d|n} \varphi (d + 1)$。
注意到这时$(n, n)$这一对数只算了一遍,所以最后的答案$ans = (sum + 1) / 2$。
线性筛一波就好啦,时间复杂度$O(n)$。
Code:
#include <cstdio>
#include <cstring>
using namespace std; const int N = 1e6 + ; int n, pCnt = , ans = , pri[N], phi[N];
bool np[N]; inline void sieve() {
phi[] = ;
for(int i = ; i <= n + ; i++) {
if(!np[i]) pri[++pCnt] = i, phi[i] = i - ;
for(int j = ; j <= pCnt && i * pri[j] <= n + ; j++) {
np[i * pri[j]] = ;
if(i % pri[j] == ) {
phi[i * pri[j]] = phi[i] * pri[j];
break;
}
phi[i * pri[j]] = phi[i] * phi[pri[j]];
}
}
} int main() {
scanf("%d", &n);
sieve();
for(int i = ; i <= n; i++)
if(n % i == ) ans += phi[i + ];
printf("%d\n", (ans + ) / );
return ;
}
Luogu 4388 付公主的矩形的更多相关文章
- P4388 付公主的矩形(gcd+欧拉函数)
P4388 付公主的矩形 前置芝士 \(gcd\)与欧拉函数 要求对其应用于性质比较熟,否则建议左转百度 思路 有\(n×m\)的矩阵,题目要求对角线经过的格子有\(N\)个, 设函数\(f(x,y) ...
- luogu4388 付公主的矩形
题面: 为了排解心中的怒气,她造了大量的稻草人来发泄.每天付公主都会把一些稻草人摆成一个R∗C的矩形,矩形的每个方格上都有一个稻草人.然后她站在这个矩形的左上角,向矩形的右下角射箭.付公主的箭术过人, ...
- [洛谷P4388] 付公主的矩形
18.09.09模拟赛T1. 一道数学题. 题目传送门 首先把对角线当成是某个点的移动轨迹,从左下到右上. 那么这个点每上升一个单位长度,就穿过一个格子. 每右移一个单位长度,也会穿过一个格子. 例外 ...
- luogu P4389 付公主的背包
传送门 神仙题鸭!orz dkw 暴力就是完全背包 而完全背包可以和生成函数扯上关系,记第i种物品质量为\(a_i\),那么这种物品的生成函数\(G(i)=\sum_{j=0}^{\infty}x^{ ...
- [luogu 4389] 付公主的背包
题意:求一个较大的多重背包对于每个i的方案数,答案对998244353取模. 思路: 生成函数: 对于一个\(V\) 设: \(f(x) = \sum_{i=0}^{oo} x ^ {V * i} = ...
- 洛谷 P4389 付公主的背包 解题报告
P4389 付公主的背包 题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装\(10^5\)大小的东西 付公主有\(n\)种商品,她要准备出摊了 每种商品体积为\(V_i\),都有\ ...
- LuoguP4389 付公主的背包【生成函数+多项式exp】
题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装10^5105大小的东西 付公主有n种商品,她要准备出摊了 每种商品体积为Vi,都有10^5105件 给定m,对于s\in [1,m ...
- 洛谷 4389 付公主的背包——多项式求ln、exp
题目:https://www.luogu.org/problemnew/show/P4389 关于泰勒展开: https://blog.csdn.net/SoHardToNamed/article/d ...
- luoguP4389 付公主的背包
luogu 显然这是个背包题 显然物品的数量是不用管的 所以考虑大小为\(v\)的物品可以装的体积用生成函数表示一下 \[ f(x)=\sum_{i=0}^{+\infty}x^{vi}=\frac{ ...
随机推荐
- Git学习--版本回退
现在,你已经学会了修改文件,然后把修改提交到Git版本库,现在,再练习一次,修改readme.txt文件如下: Git is a distributed version control system. ...
- DedeCMS织梦模板标签调用大全
本文转载:http://www.mubanzhijia.com/jishujiaocheng/1.html 关键描述调用标签: <meta name="keywords" c ...
- CAP理论、BASE理论
从分布式一致性谈到CAP理论.BASE理论 https://www.cnblogs.com/szlbm/p/5588543.html 问题的提出 在计算机科学领域,分布式一致性是一个相当重要且被广泛探 ...
- LeetCode 314. Binary Tree Vertical Order Traversal
原题链接在这里:https://leetcode.com/problems/binary-tree-vertical-order-traversal/ 题目: Given a binary tree, ...
- BZOJ1370:[Baltic2003]团伙
浅谈并查集:https://www.cnblogs.com/AKMer/p/10360090.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php? ...
- 第一章计算机网络和因特网-day02
1.互联网中的时延:处理时延.排队时延.传输时延.传播时延. 处理时延:检查分组首部和决定该分组导向何处的时间. 排队时延:分组在链路上等待传输的时延. 传输时延:分组经过路由器与交换机的过程的时延. ...
- (1)java8初体验
很多博客都拿Comparator,我也贴一下吧. java8以前的匿名内部类用来排序. //匿名内部类 @Test public void java8Test() { Person p1 = new ...
- GWT实现平滑移动图片效果
在一些网站的首页上,顶部总会存在一些平滑移动的图片,一般用来投放广告或者业务介绍.多个图片只在一个区域展示,仅通过一些方法来不停的移动这个区域的图片来达到展示多个图片的目的.如果是普通的网页,使用Jq ...
- 天梯L2-001. 紧急救援(25分)
L2-001. 紧急救援 时间限制 200 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 作为一个城市的应急救援队伍的负责人,你有一张特殊的全国 ...
- urllib2模块中文翻译与学习 - Python 2.7.8官方文档
总结 目的 打开指定网址 要求 了解需要处理的网站的操作流程 数据包的构造与提交 对可能的响应处理选择合适的处理器(模块内的各种 *Handler()) 核心 urllib.urlencode(que ...