原题链接


树链剖分的模板题:在点带权树树上维护路径和,最大值和单点修改

这里给出几个定义

以任意点为根,然后记 size (u ) 为以 u 为根的子树的结点个数,令 v 为 u 所有
儿子中 size 值最大的一个儿子,则 ( u , v ) 为重边, v 称为 u 的重儿子。 u 到其余儿子的边为轻边。

根据定义:任何一个点属于且仅属于一条重链(这里一个点也算是重链)

我们称某条路径为重路径(链),当且仅当它全部由重边组成且端点两边没有重边了。

所以我们可以把这个棵树分成若干个重链,经过证明重链的个数不超过O(logn)

以下给出几个性质可以帮助理解:

性质1:如果 ( u , v ) 为轻边,则 size ( v ) <= size ( u ) / 2

性质2:从根到某一点 V 的路径上的轻边个数不大于 O (log n ) 。

性质3:我们称某条路径为重路径(链),当且仅当它全部由重边组成。那么对于
每个点到根的路径上都不超过 O (log n ) 条轻边和 O (log n ) 条重路径。

如果我们可以用数据结构维护每条重链,就可以在O(nlog^2n)的复杂度内完成询问

接下来给出算法的具体实现步骤

核心:用dfs处理dfs序保证每条重链的点在dfs序列的编号连续,用线段树维护每个重链所在dfs序列

用两次DFS计算7个值

fa[x]:x的父亲

deep[x]:x的深度

sz[x]:以x为根的子树大小

son[x]:x的重儿子

top[x]:x所在的重链的深度最小的节点编号(显然重链是一条深度递增的链)

pos[x]:x在序列中的下标

idx[x]:序列的第x位置对应树中节点编号

这个可以用两次dfs维护出来.

接下来考虑我们怎么把(u,v)的路径拆分成若干个重链:

显然找路径是求LCA的过程

我们始终令deep[top[u]]>deep[top[v]],

当top[v]=top[u] 时,显然他们属于同一个重链,我们直接query就好

当top[u]!=top[v]时,我们让u去他top的fa,这样就到了新的重链

而且这次操作可以在logn内完成这部分路径的查询,如此下去,一定能到他们top相同的时候.就OK啦

 #include<cstdio>
#include<algorithm>
#include<cstring>
#define N 30010
#define INF 100000000
using namespace std;
int ecnt,head[N],q,val[N],a,b,fa[N],deep[N],son[N],sz[N],top[N],tot,pos[N],indx[N],n;
//数组的定义见上
char s[N];
int read()
{
int ret=,neg=;
char j=getchar();
for (;j>'' || j<'';j=getchar())
if (j == '-') neg=-;
for (;j>='' && j<='';j=getchar())
ret=ret*+j-'';
return ret*neg;
}
struct adj//边
{
int nxt,v;
}e[*N];
struct node//线段树的点
{
int l,r,sum,mx;
}t[*N];
inline void add(int u,int v)//加边
{
e[++ecnt].v=v;
e[ecnt].nxt=head[u];
head[u]=ecnt;
e[++ecnt].v=u;
e[ecnt].nxt=head[v];
head[v]=ecnt;
}
void dfs1(int x,int father,int depth)//第一次dfs处理深度,子树大小,重儿子是谁
{
deep[x]=depth,fa[x]=father,sz[x]=;
for (int i=head[x];i;i=e[i].nxt)
{
int v=e[i].v;
if (v==father) continue;
dfs1(v,x,depth+);
sz[x]+=sz[v];
if (!son[x] || sz[v]>sz[son[x]]) son[x]=v;
}
}
void dfs2(int x,int TOP)//第二次dfs处理dfs序和top[i]
{
top[x]=TOP,pos[x]=++tot,indx[pos[x]]=x;
if (son[x]!=) dfs2(son[x],TOP);//首先搜重儿子保证这个重链上的点的dfs序连续
for (int i=head[x];i;i=e[i].nxt)
if (e[i].v==son[x] || e[i].v==fa[x]) continue;
else dfs2(e[i].v,e[i].v);
}
void pushup(int p)//emmm
{
t[p].mx=max(t[p<<].mx,t[p<<|].mx);
t[p].sum=t[p<<].sum+t[p<<|].sum;
}
void build(int p,int l,int r)//线段树
{
t[p].l=l,t[p].r=r;
if (l==r)
t[p].sum=t[p].mx=val[indx[l]];//当前的左端点实际上要维护是dfs序对应的节点编号
else
{
int mid=l+r>>;
build(p<<,l,mid);
build(p<<|,mid+,r);
pushup(p);
}
}
void modify(int p,int l,int k)
{
if (t[p].l==l && t[p].r==t[p].l)
t[p].sum=k,t[p].mx=k;
else
{
int mid=t[p].l+t[p].r>>;
if (l<=mid) modify(p<<,l,k);
else modify(p<<|,l,k);
pushup(p);
}
}
int querySum(int p,int l,int r)
{
if (t[p].l==l && t[p].r==r)
return t[p].sum;
int mid=t[p].l+t[p].r>>;
if (r<=mid) return querySum(p<<,l,r);
if (l>mid) return querySum(p<<|,l,r);
return querySum(p<<,l,mid)+querySum(p<<|,mid+,r);
}
int queryMax(int p,int l,int r)
{
if (t[p].l==l && t[p].r==r)
return t[p].mx;
int mid=t[p].l+t[p].r>>;
if (r<=mid) return queryMax(p<<,l,r);
if (l>mid) return queryMax(p<<|,l,r);
return max(queryMax(p<<,l,mid),queryMax(p<<|,mid+,r));
}
int pathSum(int u,int v)
{
int ret=;
while (top[u]!=top[v])
{
if (deep[top[u]]<deep[top[v]]) swap(u,v);//保证top[u]深度较大
ret+=querySum(,pos[top[u]],pos[u]);
u=fa[top[u]];
}
if (deep[u]>deep[v]) swap(u,v);//最后别忘了走pos[u]和pos[v]之间的位置
return ret+querySum(,pos[u],pos[v]);
}
int pathMax(int u,int v)
{
int ret=-INF;
while (top[u]!=top[v])
{
if (deep[top[u]]<deep[top[v]]) swap(u,v);
ret=max(ret,queryMax(,pos[top[u]],pos[u]));
u=fa[top[u]];
}
if (deep[u]>deep[v]) swap(u,v);
return max(ret,queryMax(,pos[u],pos[v]));
}
int main()
{
n=read();
for (int i=;i<n;i++)
add(read(),read());
for (int i=;i<=n;i++)
val[i]=read();
dfs1(,,);
dfs2(,);
build(,,n);
q=read();
while (q--)
{
scanf("%s%d%d",s,&a,&b);
if (s[]=='C')
modify(,pos[a],b);
else if (s[]=='M')
printf("%d\n",pathMax(a,b));
else printf("%d\n",pathSum(a,b));
}
return ;
}

BZOJ 1036 [ZJOI2008]树的统计Count | 树链剖分模板的更多相关文章

  1. BZOJ 1036: [ZJOI2008]树的统计Count [树链剖分]【学习笔记】

    1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 14302  Solved: 5779[Submit ...

  2. Bzoj 1036: [ZJOI2008]树的统计Count 树链剖分,LCT

    1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 11102  Solved: 4490[Submit ...

  3. BZOJ 1036: [ZJOI2008]树的统计Count( 树链剖分 )

    树链剖分... 不知道为什么跑这么慢 = = 调了一节课啊跪.. ------------------------------------------------------------------- ...

  4. bzoj 1036: [ZJOI2008]树的统计Count 树链剖分+线段树

    1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 16294  Solved: 6645[Submit ...

  5. BZOJ 1036: [ZJOI2008]树的统计Count (树链剖分模板题)

    1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 14982  Solved: 6081[Submit ...

  6. BZOJ 1036 [ZJOI2008]树的统计Count (树链剖分)(线段树单点修改)

    [ZJOI2008]树的统计Count Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 14968  Solved: 6079[Submit][Stat ...

  7. 【BZOJ1036】[ZJOI2008]树的统计Count 树链剖分

    [BZOJ1036][ZJOI2008]树的统计Count Description 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将以下面的形式来要求你对这棵树完成一些操作: I. ...

  8. bzoj1036 [ZJOI2008]树的统计Count 树链剖分模板题

    [ZJOI2008]树的统计Count Description 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将以下面的形式来要求你对这棵树完成 一些操作: I. CHANGE u ...

  9. Cogs 1688. [ZJOI2008]树的统计Count(树链剖分+线段树||LCT)

    [ZJOI2008]树的统计Count ★★★ 输入文件:bzoj_1036.in 输出文件:bzoj_1036.out 简单对比 时间限制:5 s 内存限制:162 MB [题目描述] 一棵树上有n ...

  10. 【bzoj1036】[ZJOI2008]树的统计Count 树链剖分+线段树

    题目描述 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v ...

随机推荐

  1. LeetCode94. Binary Tree Inorder Traversal

    题目 给定一个二叉树,返回它的中序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [1,3,2] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? 考点 stack ...

  2. RPC框架基础概念理解以及使用初体验

    RPC:Remote Procedure Call(远程服务调用) RPC是做什么的 通过RPC框架机器A某个进程可以通过网络调用机器B上的进程方法,就像在本地上调用一样. RPC可以基于HTTP或者 ...

  3. iOS-UICollectionViewController 介绍

    废话不多说,列几个列子 (几种情况下的做法): 情景一: 介绍:1. 在UIViewController 上加 UICollectionView (用代码 创建 UICollectionView). ...

  4. python——标准异常总结

    请参考此网站: Python 标准异常总结 https://fishc.com.cn/forum.php?mod=viewthread&tid=45814&extra=page%3D1 ...

  5. TouTiao开源项目 分析笔记3

    1.搭建NewsTabLayout片段 1.1.加载布局 @Nullable @Override public View onCreateView(LayoutInflater inflater, @ ...

  6. PHP.22-Smart模版

    Smart模版 smarty是一个基于PHP开发的PHP模板引擎.它提供了逻辑与外在内容的分离,简单的讲,目的就是要使PHP程序员同美工分离,使用的程序员改变程序的逻辑内容不会影响到美工的页面设计,美 ...

  7. [bzoj3196][tyvj1728]普通平衡树

    真是太差了,到现在才打出一个平衡树的板子.. 感谢blackjack大佬提供的数组版treap板子!!基本完全照搬,blackjack太神啦! 但目前我只会这几个最基本的操作(说白了STL的(mult ...

  8. 分别用反射、编程接口的方式创建DataFrame

    1.通过反射的方式 使用反射来推断包含特定数据类型的RDD,这种方式代码比较少,简洁,只要你会知道元数据信息时什么样,就可以使用了 代码如下: import org.apache.spark.sql. ...

  9. Python基础——安装运行

    Python是如何运行的? 像绝大多数编程语言一样,要在计算机上能够运行python程序,至少需要安装一个最小的Python包:一个Python解释器和支持的库. 安装Python 安装包下载:htt ...

  10. 斐波那契数列(Fibonacci) iOS

    斐波那契数列Fibonacci 斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2 ...