人脸识别FaceNet+TensorFlow
一、本文目标
利用facenet源码实现从摄像头读取视频,实时检测并识别视频中的人脸。换句话说:把facenet源码中contributed目录下的real_time_face_recognition.py运行起来。
二、需要具备的条件
1、准备好的Tensorflow环境
2、摄像头(可用视频文件替代)
3、准备好的facenet源码并安装依赖包
4、训练好的人脸检测模型
5、训练好的人脸识别分类模型
三、准备工作
1、搭建Tensorflow环境
如何编译搭建见《Ubuntu16.04+TensorFlowr1.12环境搭建指南》。
2、准备摄像头
如果使用虚拟机,首先确保摄像头连接的虚拟机,连接方式见下图:

摄像头连接的虚拟机成功后,在/dev目录下会看到video0文件,需要确保当前用户有摄像头的访问权限:
sudo chown jack:jack /dev/video0
如果没有摄像头,可用视频文件替代,只需将real_time_face_recognition.py中
video_capture = cv2.VideoCapture(0)
这行代码替换为:
video_capture = cv2.VideoCapture(VIDEOPATH)
事实上,在虚拟上使用摄像头做实时视频流的人脸识别,很可能会出现“select timeout”错误,这是由于CPU的处理能力不知导致,这时也可以用视频来替代摄像头来进行实验。
建议在HOST上安装xshell+xmanager来访问虚拟机,显示人脸检查的视频窗口建议xmanager配合xshell使用(具体安装方式不再赘述,使用XShell建立连接时,设置连接属性,在 SSH --> tunneling 选项下勾选 Forward X11 connections to: Xmanager)。也可以直接在虚拟机的terminal中运行real_time_face_recognition.py,而无需安装xmanager。
3、准备好的facenet源码并安装依赖包
(1)下载源码
cd /data
git clone https://github.com/davidsandberg/facenet.git
cd facenet
(2)设置PYTHONPATH
sudo vi ~/.bashrc
在文件最后添加:
export PYTHONPATH =/data/facenet/src
source ~/.bashrc
(3)安装依赖包
workon tfenv
pip install -U –-upgrade pip
pip install -U h5py matplotlib==2.2.3 Pillow requests psutil opencv-python
(4)准备源码
为了跟tensorflow r1.12兼容,需要需要facenet.py源码中
create_input_pipeline函数,在函数的第一行添加
with tf.name_scope("tempscope"):
添加后,别忘了后面的代码缩进哦。
4、准备人脸检测模型
直接从https://drive.google.com/file/d/1EXPBSXwTaqrSC0OhUdXNmKSh9qJUQ55-/view下载已经训练好的模型20180402-114759,国内需要FQ才能下载,不FQ大概率可以搜索从国内某些网盘上下载。文件大约4GB,建议用迅雷等工具下载。文件解压到/data/models目录,解压后文件如下:
20180402-114759.pb
model-20180402-114759.ckpt-275.data-00000-of-00001
model-20180402-114759.ckpt-275.index
model-20180402-114759.meta
5、训练人脸识别分类模型
(1)从http://vis-www.cs.umass.edu/lfw/lfw.tgz下载LFW数据集到/data/datasets目录
cd /data/datasets
mkdir -p lfw/raw
tar xvf lfw.tgz -C lfw/raw --strip-components=1
(2) 训练分类模型
对齐LFW 数据集:
workon tfenv
cd /data/facenet
for N in {1..4}; do \
python src/align/align_dataset_mtcnn.py \
/data/datasets/lfw/raw \
/data/datasets/lfw/lfw_mtcnnpy_160 \
--image_size 160 \
--margin 32 \
--random_order \
--gpu_memory_fraction 0.25 \
& done
训练分类模型:
python src/classifier.py TRAIN \
/data/datasets/lfw/lfw_mtcnnpy_160 \
/data/models/20180402-114759/20180402-114759.pb \
/data/models/lfw_classifier.pkl \
--batch_size 1000 \
--min_nrof_images_per_class 40 \
--nrof_train_images_per_class 35 \
--use_split_dataset
四、运行人脸识别
配置检测模型和分类模型,修改face.py文件
facenet_model_checkpoint = os.path.dirname(__file__) + "/../model_checkpoints/20170512-110547"
classifier_model = os.path.dirname(__file__) + "/../model_checkpoints/my_classifier_1.pkl"
为:
facenet_model_checkpoint = "/data/models/20180402-114759"
classifier_model ="/data/models/lfw_classifier.pkl"
运行人脸识别代码了!祝你好运!
workon tfenv
cd /data/facenet/contributed
python real_time_face_recognition.py
如果顺利的话,应该看到小视频窗口了,人脸会被框出来,并在旁边显示识别的人名。
到这里,FaceNet人脸识别的“hello world”算是实现了,对于人脸检测、人脸识别、性别识别、情感识别、年龄识别、embedding提取、landmark提取,人脸对齐,并在生产实践中应用,这仅仅是第一步。
上面识别出的人名肯定是不准确的,这是为什么呢?算是留下的思考题,大家自己动手试试,让上面的人脸识别准确。推荐研读facenet的源码和wifi:
https://github.com/davidsandberg/facenet/
https://github.com/davidsandberg/facenet/wiki
人脸识别FaceNet+TensorFlow的更多相关文章
- TensorFlow环境 人脸识别 FaceNet 应用(一)验证测试集
TensorFlow环境 人脸识别 FaceNet 应用(一)验证测试集 前提是TensorFlow环境以及相关的依赖环境已经安装,可以正常运行. 一.下载FaceNet源代码工程 git clone ...
- 第三十七节、人脸检测MTCNN和人脸识别Facenet(附源码)
在说到人脸检测我们首先会想到利用Harr特征提取和Adaboost分类器进行人脸检测(有兴趣的可以去一看这篇博客第九节.人脸检测之Haar分类器),其检测效果也是不错的,但是目前人脸检测的应用场景逐渐 ...
- olivettifaces数据集实现人脸识别代码
数据集: # -*- coding: utf-8 -*- """ Created on Wed Apr 24 18:21:21 2019 @author: 92958 & ...
- facenet 进行人脸识别测试
1.简介:facenet 是基于 TensorFlow 的人脸识别开源库,有兴趣的同学可以扒扒源代码:https://github.com/davidsandberg/facenet 2.安装和配置 ...
- facenet 人脸识别(一)
前言 已完成TensorFlow Object Detection API环境搭建,具体搭建过程请参照: 安装运行谷歌开源的TensorFlow Object Detection API视频物体识别系 ...
- TensorFlow人脸识别
TensorFlow框架做实时人脸识别小项目(一)https://blog.csdn.net/Goerge_L/article/details/80208297 TensorFlow框架做实时人脸识别 ...
- facenet 人脸识别(二)——创建人脸库搭建人脸识别系统
搭建人脸库 选择的方式是从百度下载明星照片 照片下载,downloadImageByBaidu.py # coding=utf-8 """ 爬取百度图片的高清原图 &qu ...
- 学习笔记TF058:人脸识别
人脸识别,基于人脸部特征信息识别身份的生物识别技术.摄像机.摄像头采集人脸图像或视频流,自动检测.跟踪图像中人脸,做脸部相关技术处理,人脸检测.人脸关键点检测.人脸验证等.<麻省理工科技评论&g ...
- 项目总结二:人脸识别项目(Face Recognition for the Happy House)
一.人脸验证问题(face verification)与人脸识别问题(face recognition) 1.人脸验证问题(face verification): 输入 ...
随机推荐
- RHCE学习笔记 管理1 (第三~五章)
第三章 红帽企业linux 获取帮助 (略) man .pinfo. 第四章 编辑文件 1.输出重定向到文件和程序 >file 定向文件(覆盖) >>file 定向文件(附 ...
- echache缓存的简单使用方法
1.需要echache的jar包 2.需要配置文件ehcache.xml和ehcache.xsd,主要是在ehcache.xml中进行配置 3.修改配置文件ehcache.xml ,例如添加配置如下 ...
- 多校hdu5738 寻找
这道题前面给了两个公式,其实仔细分析一下,就会发现其实是给了你一堆点的坐标,然后让你求这些点有多少种组合可以形成共线的情况当两个点在一个坐标上时这两个点可以看做是不同的两个点,也就是说如果两个点在一个 ...
- STL中一些函数的应用
1.nth_element():找到第几大的数.用法:nth_element(a,a+k,a+n),返回一个数组a中第k大的数,时间复杂度比较小,头文件#include <algorithm&g ...
- 【P3572】little bird(单调队列+DP)
一眼看上去这个题就要DP,可是应该怎么DP呢,我们发现,数据范围最多支持O(NlogN),但是这种DP貌似不怎么有,所以应该是O(N)算法,自然想到单调队列优化DP. 然后我们先考虑如果不用单调队列应 ...
- [转载]解析 Java 类和对象的初始化过程
原文地址:http://www.ibm.com/developerworks/cn/java/j-lo-clobj-init/index.html 由一个单态模式引出的问题谈起 类的初始化和对象初始化 ...
- 【转】一次完整的HTTP请求所经历的7个步骤
HTTP通信机制是在一次完整的HTTP通信过程中,Web浏览器与Web服务器之间将完成下列7个步骤: 1. 建立TCP连接 在HTTP工作开始之前,Web浏览器首先要通过网络与Web服务器建立连接,该 ...
- YII2笔记之二
module id / module id /.../ controller id / action idmodule id / directory / controller id / action ...
- JavaScript -- 正则表达式 检验表单提交的内容
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Python staticmethod
1 @staticmethod 静态方法 when this method is called, we don't pass an instance of the class to it (as we ...