题目来源: CodeForces
基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题
 收藏
 关注

小K手中有n张牌,每张牌上有一个一位数的数,这个字数不是0就是5。小K从这些牌在抽出任意张(不能抽0张),排成一行这样就组成了一个数。使得这个数尽可能大,而且可以被90整除。

注意:

1.这个数没有前导0,

2.小K不需要使用所有的牌。

Input
每个测试数据输入共2行。
第一行给出一个n,表示n张牌。(1<=n<=1000)
第二行给出n个整数a[0],a[1],a[2],…,a[n-1] (a[i]是0或5 ) 表示牌上的数字。
Output
共一行,表示由所给牌组成的可以被90整除的最大的数,如果没有答案则输出”-1”(没有引号)
Input示例
4
5 0 5 0
Output示例
   0
【分析】:利用9的倍数特征,各位数字和为9的倍数。数论关于3的倍数有一个推论,就是能被9整除的数的各位和都是9。所以找到5的个数*5的最大的9的倍数,后面全补0。当然前面的判断也是需要的 小学奥数的知识:求n的倍数,把n拆为两个互质的数的成绩n=a*b -> 90=9*10所以最小的应该是9个5,由于是被90整除,最小的数是5555555550。 (最多9个5-45-9的倍数-后缀0-90的倍数)9个5,18个5,27个5,36个5都是9的倍数。 
5555555550是90的倍数。555555555000也是。 
////////////////////////////////////////////////////////////////////

九余数定理(同余定理)

因为题目要求最大的数,所以有多少0输出就输出多少。这个数的特点就是必须要有0。没有0则不会被90整除,并且5存在的个数必须是9的倍数,不然也不行,因此输出9倍数的5,再输出0(存在多个0,全输完最大) 即最大数
【代码】:
#include <stdio.h>
int main()
{
int n,a;
scanf("%d",&n);
int cnt5=;
int cnt0=;
for(int i=;i<=n;i++)
{
scanf("%d",&a);//只对数统计,则不必用数组
if(a==) cnt5++;
else cnt0++;
}
if(cnt0>)
{
cnt5=cnt5/;
if(cnt5==)
{
printf("");
return ;
}
for(int i=;i<=cnt5;i++)
{
printf("");
}
for(int i=;i<=cnt0;i++)
{
printf("");
}
printf("\n");
}
else
{
printf("-1\n");
}
return ;
}

数论

51nod 1433 0和5【数论/九余定理】的更多相关文章

  1. 51Nod 1433 0和5 (数论 && 被9整除数的特点)

    题意 : 小K手中有n(1~1000)张牌, 每张牌上有一个一位数的数, 这个字数不是0就是5.小K从这些牌在抽出任意张(不能抽0张), 排成一行这样就组成了一个数.使得这个数尽可能大, 而且可以被9 ...

  2. FZU 1057 a^b 【数论/九余定理】

    Accept: 1164    Submit: 3722Time Limit: 1000 mSec    Memory Limit : 32768 KB Problem Description 对于任 ...

  3. HDU-1163Eddy's digital Roots,九余定理的另一种写法!

    下午做了NYOJ-424Eddy's digital Roots后才正式接触了九余定理,不过这题可不是用的九余定理做的.网上的博客千篇一律,所以本篇就不发篇幅过多介绍九余定理了: 但还是要知道什么是九 ...

  4. LightOJ1214 Large Division 基础数论+同余定理

    Given two integers, a and b, you should check whether a is divisible by b or not. We know that an in ...

  5. 51Nod 1433 0和5(数论)

    小K手中有n张牌,每张牌上有一个一位数的数,这个字数不是0就是5.小K从这些牌在抽出任意张(不能抽0张),排成一行这样就组成了一个数.使得这个数尽可能大,而且可以被90整除. 注意: 1.这个数没有前 ...

  6. 51Nod 1433 0和5(9的倍数理论)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1433 思路: 数论中关于9的倍数的理论:若是一个数能被9整除,则各位数之 ...

  7. 51Nod - 1433 0和5 找规律

    小K手中有n张牌,每张牌上有一个一位数的数,这个字数不是0就是5.小K从这些牌在抽出任意张(不能抽0张),排成一行这样就组成了一个数.使得这个数尽可能大,而且可以被90整除. 注意: 1.这个数没有前 ...

  8. 51Nod 1433 0和5

    小K手中有n张牌,每张牌上有一个一位数的数,这个字数不是0就是5.小K从这些牌在抽出任意张(不能抽0张),排成一行这样就组成了一个数.使得这个数尽可能大,而且可以被90整除. 注意: 1.这个数没有前 ...

  9. hdu 4704 同余定理+普通快速幂

    此题往后推几步就可找到规律,从1开始,答案分别是1,2,4,8,16.... 这样就可以知道,题目的目的是求2^n%Mod的结果.....此时想,应该会想到快速幂...然后接着会发现,由于n的值过大, ...

随机推荐

  1. 程序第一次启动推送跳转,handleOpenURL没法跳转的原因

    iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有 ...

  2. 《Cracking the Coding Interview》——第3章:栈和队列——题目7

    2014-03-19 03:20 题目:实现一个包含阿猫阿狗的先入先出队列,我要猫就给我一只来的最早的猫,要狗就给我一只来的最早的狗,随便要就给我一只来的最早的宠物.建议用链表实现. 解法:单链表可以 ...

  3. 在iis上部署asp.net mvc2.0

    mvc2.0是vs2010自带的,在开发环境下可以直接部署在iis中.在生产环境下,如果不能找到正确的mvc2.0版本,可以直接把开发环境下的System.Web.Mvc.dll拷贝过去使用. 1,  ...

  4. 玩转Openstack之Nova中的协同并发(二)

    玩转Openstack之Nova中的协同并发(二) 昨天介绍了Python中的并发处理,主要介绍了Eventlet,今天就接着谈谈Openstack中Nova对其的应用. eventlet 在nova ...

  5. Yapi的坑

    前一段时间,研究WEB Api相关的工具. YApi 可以内网部署,内心十分的欢喜啊.而且gitHub上推荐超过4000星,成绩很优异嘛.然而通过最终的尝试,我还是打算放弃他,投入Postman的怀抱 ...

  6. CentOS 7.5 部署蓝鲸运维平台

    环境准备 官方建议 准备至少3台 CentOS 7 以上操作系统的机器 最低配置:2核4G 建议配置: 4核12G 以上 部署前关闭待安装主机之间防火墙,保证蓝鲸主机之间通信无碍 部署前关闭SELin ...

  7. Spring Boot多数据源配置(二)MongoDB

    在Spring Boot多数据源配置(一)durid.mysql.jpa 整合中已经讲过了Spring Boot如何配置mysql多数据源.本篇文章讲一下Spring Boot如何配置mongoDB多 ...

  8. Vim常用指令总结(持续更新中)

    1 模式变更 命令 说明 a(append)/i(insert) 普通模式→插入模式 : 普通模式→命令行模式 ESC或者Ctrl 插入模式→普通模式 R(Replace)/Insert两次 普通模式 ...

  9. nyoj 题目49 开心的小明

    开心的小明 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 小明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天 ...

  10. InfluxDB数据备份和恢复方法,支持本地和远程备份

    本文属于<InfluxDB系列教程>文章系列,该系列共包括以下 17 部分: InfluxDB学习之InfluxDB的基本概念 InfluxDB学习之InfluxDB的基本操作 Influ ...