Salesmen

Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Traveling salesmen of nhn. (the prestigious Korean internet company) report their current location to the company on a regular basis. They also have to report their new location to the company if they are moving to another location. The company keep each salesman's working path on a map of his working area and uses this path information for the planning of the next work of the salesman. The map of a salesman's working area is represented as a connected and undirected graph, where vertices represent the possible locations of the salesman an edges correspond to the possible movements between locations. Therefore the salesman's working path can be denoted by a sequence of vertices in the graph. Since each salesman reports his position regularly an he can stay at some place for a very long time, the same vertices of the graph can appear consecutively in his working path. Let a salesman's working path be correct if two consecutive vertices correspond either the same vertex or two adjacent vertices in the graph.

For example on the following graph representing the working area of a salesman,

<tex2html_verbatim_mark>

a reported working path [1 2 2 6 5 5 5 7 4] is a correct path. But a reported working path [1 2 2 7 5 5 5 7 4] is not a correct path since there is no edge in the graph between vertices 2 a 7. If we assume that the salesman reports his location every time when he has to report his location (but possibly incorrectly), then the correct path could be [1 2 2 4 5 5 5 7 4], [1 2 4 7 5 5 5 7 4], or [1 2 2 6 5 5 5 7 4].

The length of a working path is the number of vertices in the path. We define the distance between two pathsA = a1a2...an <tex2html_verbatim_mark>and B = b1b2...bn <tex2html_verbatim_mark>of the same length n <tex2html_verbatim_mark>as

dist(AB) = d (aibi)

<tex2html_verbatim_mark>

where

d (ab) = 

<tex2html_verbatim_mark>

Given a graph representing the working area of a salesman and a working path (possible not a correct path),A <tex2html_verbatim_mark>, of a salesman, write a program to compute a correct working path, B <tex2html_verbatim_mark>, of the same length where the distance dist(AB) <tex2html_verbatim_mark>is minimized.

Input

The program is to read the input from standard input. The input consists of T <tex2html_verbatim_mark>test cases. The number of test cases (T) <tex2html_verbatim_mark>is given in the first line of the input. The first line of each test case contains two integers n1<tex2html_verbatim_mark>, n2 <tex2html_verbatim_mark>(3n1100, 2n24, 950) <tex2html_verbatim_mark>where n1 <tex2html_verbatim_mark>is the number of vertices of the graph representing the working map of a salesman and n2 <tex2html_verbatim_mark>is the number of edges in the graph. The input graph is a connected graph. Each vertex of the graph is numbered from 1 to n1 <tex2html_verbatim_mark>. In the following n2 <tex2html_verbatim_mark>lines, each line contains a pair of vertices which represent an edge of the graph. The last line of each test case contains information on a working path of the salesman. The first integer n <tex2html_verbatim_mark>(2n200) <tex2html_verbatim_mark>in the line is the length of the path and the following n integers represent the sequence of vertices in the working path.

Output

Your program is to write to standard output. Print one line for each test case. The line should contain the minimum distance of the input path to a correct path of the same length.

Sample Input

2
7 9
1 2
2 3
2 4
2 6
3 4
4 5
5 6
7 4
7 5
9 1 2 2 7 5 5 5 7 4
7 9
1 2
2 3
2 4
2 6
3 4
4 5
5 6
7 4
7 5
9 1 2 2 6 5 5 5 7 4

Sample Output

1
0
 #include<stdio.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std; vector<int>edg[];
int dp[][],path[]; int main()
{
int T;
int i,j,k;
int n,m,l;
int x,y;
scanf("%d",&T);
while(T--)
{
scanf("%d %d",&n,&m); for(j=;j<=n;j++)
{
dp[][j]=;
}
for(i=;i<=n;i++)
{
edg[i].clear();
edg[i].push_back(i);
} for(i=;i<=m;i++)
{
scanf("%d %d",&x,&y);
edg[x].push_back(y);
edg[y].push_back(x);
}
scanf("%d",&l);
for(i=;i<=l;i++)
{
scanf("%d",&path[i]);
} dp[][path[]]=;
for(i=;i<=l;i++)
{
for(j=;j<=n;j++)
{
int v=edg[j][];
dp[i][j]=dp[i-][v]+;
for(k=;k<edg[j].size();k++)
{
v=edg[j][k];
dp[i][j]=min(dp[i][j],dp[i-][v]+);
}
}
dp[i][path[i]]--;
}
int ans=;
for(i=;i<=n;i++)
{
//printf("%d\n",dp[2][i]);
if(dp[l][i]<ans)
ans=dp[l][i];
}
printf("%d\n",ans);
}
return ;
}

UVA 1424 二 Salesmen的更多相关文章

  1. 递推DP UVA 1424 Salesmen

    题目传送门 /* 题意:给定包含n个点的无向图和一个长度为L的序列,修改尽量少的点使得相邻的数字相同或连通 DP:状态转移方程:dp[i][j] = min (dp[i][j], dp[i-1][k] ...

  2. UVA题解二

    UVA题解二 UVA 110 题目描述:输出一个Pascal程序,该程序能读入不多于\(8\)个数,并输出从小到大排好序后的数.注意:该程序只能用读入语句,输出语句,if语句. solution 模仿 ...

  3. Problem W UVA 662 二十三 Fast Food

    Fast Food Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Status P ...

  4. UVA 607 二十二 Scheduling Lectures

    Scheduling Lectures Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submi ...

  5. UVA 442 二十 Matrix Chain Multiplication

    Matrix Chain Multiplication Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %l ...

  6. UVA 590 二十一 Always on the run

     Always on the run Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit ...

  7. uva 11178二维几何(点与直线、点积叉积)

    Problem D Morley’s Theorem Input: Standard Input Output: Standard Output Morley’s theorem states tha ...

  8. UVA 11019 二维匹配 AC自动机

    这个题目要求在一个大矩阵里面匹配一个小矩阵,是AC自动机的灵活应用 思路是逐行按普通AC自动机匹配,用过counts[i][j]记录一下T字符矩阵以i行j列为开头的与P等大的矩阵区域 有多少行已经匹配 ...

  9. UVA 10465 Homer Simpson(全然背包: 二维目标条件)

    UVA 10465 Homer Simpson(全然背包: 二维目标条件) http://uva.onlinejudge.org/index.php? option=com_onlinejudge&a ...

随机推荐

  1. 夺命雷公狗—angularjs—21—解决angularjs压缩问题

    我们在实际的开发中往往离不开js的代码压缩,因为这样可以减轻服务器的压力,是的的方法如下所示: <!DOCTYPE html> <html lang="en" n ...

  2. zw版【转发·台湾nvp系列Delphi例程】HALCON ObjToInteger1-4

    zw版[转发·台湾nvp系列Delphi例程]HALCON ObjToInteger1 procedure TForm1.Button1Click(Sender: TObject);var img, ...

  3. hadoop文件系统FileSystem详解 转自http://hi.baidu.com/270460591/item/0efacd8accb7a1d7ef083d05

    Hadoop文件系统 基本的文件系统命令操作, 通过hadoop fs -help可以获取所有的命令的详细帮助文件. Java抽象类org.apache.hadoop.fs.FileSystem定义了 ...

  4. SQL Server安装完成后3个需要立即修改的配置选项(转载)

    你用安装向导安装了全新的SQL Server,最后你点击了完成按钮.哇噢~~~现在我们可以把我们的服务器进入生产了!抱歉,那并不是真的,因为你的全新SQL Server默认配置是错误的. 是的,你没看 ...

  5. 认识Swift

    Swift 是一门新的编程语言,用于编写 iOS 和 OS X 应用程序.Swift 结合了 C 和 Objective-C 的优点并且不受C兼容性的限制.Swift 使用安全的编程模式并添加了很多新 ...

  6. Hibernate中Session的get和load

    hibernate中Session接口提供的get()和load()方法都是用来获取一个实体对象,在使用方式和查询性能上有一些区别.测试版本:hibernate 4.2.0. get Session接 ...

  7. 视频处理控件TVideoGrabber视频捕捉设设备相关问题

    选择一个视频捕捉设备 首先设置 VideoSource = vs_VideoCaptureDevice来选择一个视频捕捉设备作为一个视频源. 通过指定VideoDevice属性来选择当前的视频捕捉设备 ...

  8. 基于ASP.NET MVC 4/5 Razor的模块化/插件式架构实现

    概述 在日常开发中, 我们经常谈起模块化/插件化架构,这样可既可以提高开效率,又可以实现良好的扩展性,尤其对于产品化的系统有更好的实用性. 架构 我们采用的是MVC5(本文中介绍的方法对于MVC4也是 ...

  9. linux源码Makefile详解(完整)【转】

    转自:http://www.cnblogs.com/Daniel-G/p/3286614.html 随着 Linux 操作系统的广泛应用,特别是 Linux 在嵌入式领域的发展,越来越多的人开始投身到 ...

  10. Web API 和 WCF 的比较

    现在有很多可用的技术允许你创建被不同客户端所消费的服务,这些客户端可能是Web应用程序.Windows应用程序和移动应用等.服务可以支持http协议或者其他协议.接下来的讨论仅限于ASP.NET We ...