Group Projects


Description

There are n students in a class working on group projects. The students will divide into groups (some students may be in groups alone), work on their independent pieces, and then discuss the results together. It takes the i-th student ai minutes to finish his/her independent piece.

If students work at different paces, it can be frustrating for the faster students and stressful for the slower ones. In particular, the imbalance of a group is defined as the maximum ai in the group minus the minimum ai in the group. Note that a group containing a single student has an imbalance of 0. How many ways are there for the students to divide into groups so that the total imbalance of all groups is at most k?

Two divisions are considered distinct if there exists a pair of students who work in the same group in one division but different groups in the other.

Input

The first line contains two space-separated integers n and k (1 ≤ n ≤ 200, 0 ≤ k ≤ 1000) — the number of students and the maximum total imbalance allowed, respectively.

The second line contains n space-separated integers ai (1 ≤ ai ≤ 500) — the time it takes the i-th student to complete his/her independent piece of work.

Output

Print a single integer, the number of ways the students can form groups. As the answer may be large, print its value modulo \(10^9 + 7\).

Sample Input

3 2

2 4 5

Sample Output

3


题目大意

有n个商品,每个商品有不同的价值。要求把这些商品分组,每组有一个值为组内商品的最大价值差,问是这些每组值的和不超过m的方案数,答案对\(1e9+7\)取模。

这道题的定义比较难,首先我们我们对商品按其价值由小到大进行排序。我们可以发现,每一组的价值差为相邻商品价值差的和。

定义dp[i][j][k]表示前i件商品还有j组未完成,差值为k的分组种数。

共有4种转移方案

temp = (a[i] - a[i-1]) * j;

  1. 第i件商品加入一个新分组,并且该分组未完成; dp[i][j+1][k] = dp[i][j+1][k] + dp[i-1][j][k-temp];
  2. 第i件商品加入一个新分组,并且该分组只有一个元素;dp[i][j][k] = dp[i][j][k] + dp[i-1][j][k-temp];
  3. 第i件商品加入一个之前的分组,并且该分组未完成; dp[i][j][k] = dp[i][j][k] + dp[i-1][j][k-temp] * j;
  4. 第i件商品加入一个之前的分组,并且该分组已完成。 dp[i][j-1][k] = dp[i][j-1][k] + dp[i-1][j][k-temp] * j;

每一个转移都只与i 和 i-1有关,所以我们可以用滚动数组进行优化,

时间复杂度为\(O(n^2k)\), 空间复杂度为\(nk\).

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int mod = 1e9 + 7;
int n,m;
int dp[2][210][1010];
int a[210]; int main(){
ios::sync_with_stdio(false); cin.tie(0);
cin >> n >> m;
for(int i = 1;i <= n;i++)cin >> a[i];
sort(a + 1,a + n + 1); dp[0][0][0] = 1;
int cur = 0;
for(int i = 1;i <= n;i++){
cur ^= 1;
memset(dp[cur],0,sizeof(dp[cur]));
int v = a[i] - a[i-1];
for(int j = 0;j < i;j++){
int temp = v * j;
for(int k = temp;k <= m;k++){
dp[cur][j + 1][k] = (dp[cur][j + 1][k] + dp[cur^1][j][k-temp]) % mod;
dp[cur][j][k] = (dp[cur][j][k] + dp[cur^1][j][k-temp]) % mod;
if(j)dp[cur][j-1][k] = (dp[cur][j-1][k] + (long long)dp[cur^1][j][k-temp] * j) % mod;
if(j)dp[cur][j][k] = (dp[cur][j][k] + (long long)dp[cur^1][j][k-temp] * j) % mod;
}
}
}
int ans = 0;
for(int i = 0;i <= m;i++)
ans = (ans + dp[cur][0][i]) % mod;
cout << ans << endl;
return 0;
}

[Codeforces626F] Group Projects (DP)的更多相关文章

  1. 8VC Venture Cup 2016 - Elimination Round F - Group Projects dp好题

    F - Group Projects 题目大意:给你n个物品, 每个物品有个权值ai, 把它们分成若干组, 总消耗为每组里的最大值减最小值之和. 问你一共有多少种分组方法. 思路:感觉刚看到的时候的想 ...

  2. 8VC Venture Cup 2016 - Elimination Round F. Group Projects dp

    F. Group Projects 题目连接: http://www.codeforces.com/contest/626/problem/F Description There are n stud ...

  3. DP的序--Codeforces626F. Group Projects

    $n \leq 200$个数,$ \leq 500$,$K \leq 1000$代价内的数字分组有多少?一个分组的代价是分成的每个小组的总代价:一个小组的代价是极差. 问的极差那就从极入手嘛.一个小组 ...

  4. Codeforces 626F Group Projects(滚动数组+差分dp)

    F. Group Projects time limit per test:2 seconds memory limit per test:256 megabytes input:standard i ...

  5. Codeforces 8VC Venture Cup 2016 - Elimination Round F. Group Projects 差分DP*****

    F. Group Projects   There are n students in a class working on group projects. The students will div ...

  6. 【CodeForces】626 F. Group Projects 动态规划

    [题目]F. Group Projects [题意]给定k和n个数字ai,要求分成若干集合使得每个集合内部极差的总和不超过k的方案数.n<=200,m<=1000,1<=ai< ...

  7. [CF626F]Group Projects

    [CF626F]Group Projects 题目大意: 有一个长度为\(n(n\le200)\)的数列\(\{A_i\}\),将其划分成若干个子集,每个子集贡献为子集\(\max-\min\).求子 ...

  8. Codeforces 626F Group Projects (DP)

    题目链接  8VC Venture Cup 2016 - Elimination Round 题意  把$n$个物品分成若干组,每个组的代价为组内价值的极差,求所有组的代价之和不超过$k$的方案数. ...

  9. VK Cup 2015 - Round 2 (unofficial online mirror, Div. 1 only) B. Work Group 树形dp

    题目链接: http://codeforces.com/problemset/problem/533/B B. Work Group time limit per test2 secondsmemor ...

随机推荐

  1. 通过JavaScript设置样式和jQuey设置样式,还有随机数抛出水果的习题

    一:通过JavaScript的方式设置样式(:拿习题为例): var shuiguo = document.getElementById('fruit');     shuiguo.style.bac ...

  2. android中获取打气筒的几种方式

    1,简单说明,打气筒就是将我们的xml布局转换为我们的view对象,不扯远了,直接看代码 A:从context中获取 LayoutInflater inflater1 = LayoutInflater ...

  3. 机器学习(Machine Learning)&深入学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林. ...

  4. 转:MyEclipse8.6插件安装方法

    通常,我们可以用update来直接安装.但是myeclipse限制了中国区的下载和更新.所以我们只能用插件配置的方法来实现. MyEclipse8.6插件安装同Eclipse插件安装方式大致相同,如下 ...

  5. 向已写好的多行插入sql语句中添加字段和值

    #region 添加支款方式--向已写好的多行插入sql语句中添加字段和值 public int A_ZhifuFS(int diqu) { ; string strData = @"SEL ...

  6. linux设备驱动归纳总结(八):4.总线热插拔【转】

    本文转载自:http://blog.chinaunix.net/uid-25014876-id-110774.html linux设备驱动归纳总结(八):4.总线热插拔 xxxxxxxxxxxxxxx ...

  7. Linux下jdk的配置

    首先将*.tar.gz压缩包解压 命令:tar -xzvf *.tar.gz假设得到的文件夹为java 将其移动到/usr/中 命令为:sudo mv java /usr/ 然后设置环境变量: sud ...

  8. OpenStack集成Docker

    声明:绝对原创,欢迎转载,但请标明出处,谢谢! 最近在做openstack与Docker的集成工作,走了不少弯路,遇到不少问题,不过最终搭建成功了.现在将过程分享出来,以供参考. 一.环境介绍 1.软 ...

  9. textarea 在浏览器中禁用拖动和固定大小

    HTML 标签 textarea 在大部分浏览器中只要指定行(rows)和列(cols)属性,就可以规定 textarea 的尺寸,大小就不会改变,不过更好的办法是使用 CSS 的 height 和 ...

  10. CalParcess.php.

    <?php require_once "OperSerVice.class.php"; //接受三个数 //isset if(!isset($_REQUEST['NUM1'] ...