该题没思路,参考了网上各种题解。。。。

注意到凡是那种11111..... 22222..... 33333.....之类的序列都可用这个式子来表示:k*(10^x-1)/9
进而简化:8 * (10^x-1)/9=L * k (k是一个整数)
8*(10^x-1)=9L*k
d=gcd(9L,8)=gcd(8,L)
8*(10^x-1)/d=9L/d*k
令p=8/d q=9L/d p*(10^x-1)=q*k
因为p,q互质,所以q|(10^x-1),即10^x-1=0(mod q),也就是10^x=1(mod 9*L/d)
由欧拉定理可知,当q与10互质的时候,10^(φ(q))=1 (mod q),即必定存在一个解x。
而题目中要求的是最小的解,设为min,那么有a^min=1%q,因为要满足a^φ(q)=1%q,那么a^φ(q)肯定能变换成(a^min)^i。
所以接下来只要枚举φ(q)的因子,找出符合条件的最小者即可。

无解的时候就是q与10不互质的时候,因为若q与10有公因子d:
1.若d=2,q=2*k,那么10^x=2^x*5^x=1%2k
   即2^x*5^x=1+2k*m,左边为偶数,右边为奇数,显然矛盾。
2.若d=5,q=5*k,那么10^x=2^x*5^x=1%5k
   即2^x*5^x=1+5k*m,左边是5的倍数,右边不是5的倍数,显然矛盾。

#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h> using namespace std;
long long L; long long gcd(long long a,long long b) {
return b==?a:gcd(b,a%b);
}
long long multi(long long a,long long b,long long mod) {
long long ret=;
while(b) {
if(b&)
ret=(ret+a)%mod;
a=(a<<)%mod;
b=b>>;
}
return ret;
}
long long quickPow(long long a,long long b,long long mod) {
long long ret=;
while(b) {
if(b&)
ret=multi(ret,a,mod); //直接相乘的话可能会溢出
a=multi(a,a,mod);
b=b>>;
}
return ret;
}
//求欧拉函数
long long eular(long long n) {
long long ret=,i;
for(i=; i*i<=n; i++) {
if(n%i==) {
n=n/i;
ret*=i-;
while(n%i==) {
n=n/i;
ret*=i;
}
}
}
if(n>)
ret*=n-;
return ret;
} int main() {
int t=;
while(scanf("%I64d",&L)!=EOF) {
if(L==)
break;
long long p=*L/gcd(L,);
long long d=gcd(,p);
if(d==) {
long long phi=eular(p);
long long ans=phi;
long long m=sqrt((double)phi);
bool flag=false;
//先枚举大小在1~sqrt(phi)之间的因子
for(int i=; i<=m; i++) {
if(phi%i== && quickPow(,i,p)==) {
ans=i;
flag=true;
break;
}
}
//若1~sqrt(phi)没找到符合的因子,那么枚举sqrt(phi)~phi之间的因子
if(!flag) {
for(int i=m; i>=; i--) {
if(phi%i== && quickPow(,phi/i,p)==) {
ans=phi/i;
break;
}
}
}
printf("Case %d: %I64d\n",++t,ans);
} else {
printf("Case %d: 0\n",++t);
}
}
return ;
}

POJ 3696 The Luckiest number (欧拉函数,好题)的更多相关文章

  1. poj 3696 The Luckiest number 欧拉函数在解a^x=1modm的应用

    题意: 给一个L,求长度最小的全8数满足该数是L的倍数. 分析: 转化为求方程a^x==1modm. 之后就是各种数学论证了. 代码: //poj 3696 //sep9 #include <i ...

  2. POJ3696:The Luckiest number(欧拉函数||求某数最小的满足题意的因子)

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...

  3. POJ 2407 Relatives(欧拉函数入门题)

    Relatives Given n, a positive integer, how many positive integers less than n are relatively prime t ...

  4. POJ 2407:Relatives(欧拉函数模板)

    Relatives AC代码 Relatives Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16186   Accept ...

  5. hdu 1286 找新朋友 欧拉函数模版题

    找新朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Problem Des ...

  6. (hdu step 7.2.1)The Euler function(欧拉函数模板题——求phi[a]到phi[b]的和)

    题目: The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...

  7. UVA 10820 欧拉函数模板题

    这道题就是一道简单的欧拉函数模板题,需要注意的是,当(1,1)时只有一个,其他的都有一对.应该对欧拉函数做预处理,显然不会超时. #include<iostream> #include&l ...

  8. poj2407(欧拉函数模板题)

    题目链接:https://vjudge.net/problem/POJ-2407 题意:给出n,求0..n-1中与n互质的数的个数. 思路:欧拉函数板子题,先根据唯一分解定理求出n的所有质因数p1,p ...

  9. POJ 2478 Farey Sequence(欧拉函数前n项和)

    A - Farey Sequence Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

随机推荐

  1. Android 实现子View的状态跟随父容器的状态

    最近自学着做东西,需要做一个效果,就是我ListView的Item点击下或者选中的时候,我Item里面的各个组件的状态要和我Item的状态保持一直,这样我就可以用XML,去根据组件的不同状态去实现不同 ...

  2. jquery一个控件绑定多个事件

    jQuery("#id").bind("click mouseover",function(){})  // 两个事件中间有空格 $("p" ...

  3. MNC - Multicast NetCat

    MNC - Multicast NetCat 使用nc测试udp多播,总是遇到奇怪的问题,搞的一头雾水.偶然发现了MNC,测试了一下果然好用. 下载地址: https://github.com/mar ...

  4. How to Notify Command to evaluate in mvvmlight

    How to Raize Command to evalituate in mvvm In mvvmlight, we bind our control to the relaycommand obj ...

  5. ALTERA MAX10官方评估板,新鲜出炉!

    刚刚拿到骏龙提供的ALTERA MAX10官方评估板,还热乎呢,呵呵!赶紧跟大家分享一下 板子很简单,把IO口都扩展出来了,其他功能基本上没有. FPGA型号是10M08SAE144C8GES,144 ...

  6. 89C51单片机定时器控制的流水灯

    /***************************************************Copyright: 2014-02-11.version1.0File name: timer ...

  7. OC学习心得【适合初学者】

    一.类和对象 1.OC语言是C语言的扩充,并且OC是iOS和OS X操作系统的编程语言. ①具备完善的面向对象特性: 封装:将现实世界中存在的某个客体的属性与行为绑定在一起,并放置在一个逻辑单元内 继 ...

  8. MATLAB GUI程序设计中ListBox控件在运行期间消失的原因及解决方法

    在运行期间,ListBox控件突然消失,同时给出如下错误提示: Warning: single-selection listbox control requires that Value be an ...

  9. Daily Scrum5

    总体来说,我们今天的工作遇到了一些阻碍.前期的对于代码的大量阅读并没有使我们的进度突飞猛进.今天我们完成了关于敏感词汇辨别优化和防滥用部分的代码(之后会有微博来详细介绍),但是我们无法运行程序并测试, ...

  10. jQuery+css3弹出框插件

    先来看DEMO:https://codepen.io/jonechen/pen/regjGG 插件的开发很简单,运用了CSS3的动画效果,并且弹出框的内容可以自定义.插件的默认配置参数有三个: var ...