poj 2560 Freckles
题目连接
http://poj.org/problem?id=2560
Freckles
Description
In an episode of the Dick Van Dyke show, little Richie connects the freckles on his Dad's back to form a picture of the Liberty Bell. Alas, one of the freckles turns out to be a scar, so his Ripley's engagement falls through.
Consider Dick's back to be a plane with freckles at various (x,y) locations. Your job is to tell Richie how to connect the dots so as to minimize the amount of ink used. Richie connects the dots by drawing straight lines between pairs, possibly lifting the pen between lines. When Richie is done there must be a sequence of connected lines from any freckle to any other freckle.
Input
The first line contains 0 < n <= 100, the number of freckles on Dick's back. For each freckle, a line follows; each following line contains two real numbers indicating the (x,y) coordinates of the freckle.
Output
Your program prints a single real number to two decimal places: the minimum total length of ink lines that can connect all the freckles.
Sample Input
3
1.0 1.0
2.0 2.0
2.0 4.0
Sample Output
3.41
$n$个点用$Prim$求最小生成树,开始用的$double$类型$\%lf$控制精度$g++$不停地wa后改为$float,\%f$过了/(ㄒoㄒ)/~~
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<set>
using std::set;
using std::pair;
using std::swap;
using std::multiset;
using std::priority_queue;
#define pb(e) push_back(e)
#define sz(c) (int)(c).size()
#define mp(a, b) make_pair(a, b)
#define all(c) (c).begin(), (c).end()
#define iter(c) __typeof((c).begin())
#define cls(arr, val) memset(arr, val, sizeof(arr))
#define cpresent(c, e) (find(all(c), (e)) != (c).end())
#define rep(i, n) for(int i = 0; i < (int)n; i++)
#define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
const int N = 110;
const int INF = 0x3f3f3f3f;
typedef unsigned long long ull;
struct P {
float x, y;
P(float i = 0.0, float j = 0.0) :x(i), y(j) {}
inline float calc(const P &k) const {
return sqrt((x - k.x) * (x - k.x) + (y - k.y) * (y - k.y));
}
}A[N];
struct PDI {
int v;
float s;
PDI(int i = 0, float j = 0.0) :v(i), s(j) {}
inline bool operator<(const PDI &k) const {
return s > k.s;
}
};
struct Prim {
bool vis[N];
int tot, head[N];
float mincost[N];
struct edge { int to; float w; int next; }G[(N * N) << 1];
inline void init(int n) {
tot = 0;
rep(i, n + 1) {
head[i] = -1;
vis[i] = false;
mincost[i] = INF;
}
}
inline void add_edge(int u, int v, float w) {
G[tot] = (edge){ v, w, head[u] }; head[u] = tot++;
}
inline void built(int n) {
rep(i, n) scanf("%f %f", &A[i].x, &A[i].y);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j) continue;
add_edge(i + 1, j + 1, A[i].calc(A[j]));
}
}
}
inline void prim(int s = 1) {
float ans = 0.0;
priority_queue<PDI> q;
q.push(PDI(s));
for (int i = head[s]; ~i; i = G[i].next) {
edge &e = G[i];
q.push(PDI(e.to, mincost[e.to] = e.w));
}
vis[s] = true;
while (!q.empty()) {
PDI t = q.top(); q.pop();
int u = t.v;
if (vis[u]) continue;
vis[u] = true;
ans += mincost[u];
for (int i = head[u]; ~i; i = G[i].next) {
edge &e = G[i];
if (mincost[e.to] > e.w && !vis[e.to]) {
q.push(PDI(e.to, mincost[e.to] = e.w));
}
}
}
printf("%.2f\n", ans);
}
inline void solve(int n) {
init(n), built(n), prim();
}
}go;
int main() {
#ifdef LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w+", stdout);
#endif
int n;
while (~scanf("%d", &n)) {
go.solve(n);
}
return 0;
}
poj 2560 Freckles的更多相关文章
- POJ 2560 Freckles Prime问题解决算法
这个问题正在寻求最小生成树. 给定节点的坐标,那么我们需要根据各个点之间的这些坐标来计算距离. 除了这是标准的Prime算法的,能源利用Prime基本上,你可以使用Kruskal. 经典的算法必须填写 ...
- Poj(2560),最小生成树,Prim
题目链接:http://poj.org/problem?id=2560 只想说“全都是套路”,关键建图. #include <stdio.h> #include <string.h& ...
- POJ 2560
#include<iostream> #include<algorithm> #include<cmath> #include<iomanip> #de ...
- 最小生成树之Kruskal
模板题,学习一下最小生成树的Kruskal算法 对于一个连通网(连通带权图,假定每条边上的权均为大于零的实数)来说,每棵树的权(即树中所有边的权值总和)也可能不同 具有权最小的生成树称为最小生成树 生 ...
- 8月清北学堂培训 Day5
今天是杨思祺老师的讲授~ 最短路练习题: POJ 1125 Stockbroker Grapevine 有 N 个股票经济人可以互相传递消息,他们之间存在一些单向的通信路径.现在有一个消息要由某个人开 ...
- DP&图论 DAY 5 上午
DP&图论 DAY 5 上午 POJ 1125 Stockbroker Grapevine 有 N 个股票经济人可以互相传递消息,他们之间存在一些单向的通信路径.现在有一个消息要由某个人开 ...
- 又是图论.jpg
BZOJ 2200 道路和航线重讲ww: FJ 正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到 T 个城镇 (1 ≤ T ≤ 25000),编号为 1 到 T.这些城镇之间通过 R 条 ...
- 【转载】图论 500题——主要为hdu/poj/zoj
转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...
- POJ 1135.Domino Effect Dijkastra算法
Domino Effect Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10325 Accepted: 2560 De ...
随机推荐
- 不能读取文件“itunes.library.itl”因为它是由更高级别的itunes所创建的
转自:https://zhidao.baidu.com/question/80796363.html 是因为你安装过高版本的后又装你版本的itunes. 你在电脑上搜索所有硬盘上的itunes lib ...
- Datable 排序
if(dt.Columns.IndexOf("name") != -1) //存在这个字段 { dt.DefaultView.Sort = "name asc" ...
- MSP430F149学习之路——按键
代码一: /********************************** 程序功能:用按键控制LED灯熄灭 ***********************************/ #incl ...
- JavaScript之数组循环 forEach 循环输出数组元素
var arrayAll = []; arrayAll.push(1); arrayAll.push(2); arrayAll[arrayAll.length] = 3; arrayAll[array ...
- Promise机制
Promise的诞生与Javascript中异步编程息息相关,js中异步编程主要指的是setTimout/setInterval.DOM事件机制.ajax,通过传入回调函数实现控制反转.异步编程为js ...
- boost:进程管理
概述 Boost.Process提供了一个灵活的C++ 进程管理框架.它允许C++ developer可以像Java和.Net程序developer那样管理进程.它还提供了管理当前执行进程上下文.创建 ...
- C#去除List中集合的重复项(类型对象和单一类型)
去除重复类型对象BookInfo示例: bookList = bookList.Distinct(new DataRowComparer()).ToList(); //去除重复书籍 /// <s ...
- c#学习之Socket网络编程
我是新手以前没写过博客 希望大家勿喷, 在编写Socket的时候需要导入System.Net.Socket 命名空间.利用该类我们可以直接编写Socket的客户端和服务的的程序了, 这里我们只讲tpc ...
- [leetcode]_Valid Palindrome
题目:判断一个数字字符串是否是回文串.空串认为是回文串. 思路:双指针问题,重点在于此题的很多陷进:例如,s = " " ,return true. s = ".,&qu ...
- silverlight水印
1.自定义类 using System; using System.Net; using System.Windows; using System.Windows.Controls; using Sy ...