poj 2560 Freckles
题目连接
http://poj.org/problem?id=2560
Freckles
Description
In an episode of the Dick Van Dyke show, little Richie connects the freckles on his Dad's back to form a picture of the Liberty Bell. Alas, one of the freckles turns out to be a scar, so his Ripley's engagement falls through.
Consider Dick's back to be a plane with freckles at various (x,y) locations. Your job is to tell Richie how to connect the dots so as to minimize the amount of ink used. Richie connects the dots by drawing straight lines between pairs, possibly lifting the pen between lines. When Richie is done there must be a sequence of connected lines from any freckle to any other freckle.
Input
The first line contains 0 < n <= 100, the number of freckles on Dick's back. For each freckle, a line follows; each following line contains two real numbers indicating the (x,y) coordinates of the freckle.
Output
Your program prints a single real number to two decimal places: the minimum total length of ink lines that can connect all the freckles.
Sample Input
3
1.0 1.0
2.0 2.0
2.0 4.0
Sample Output
3.41
$n$个点用$Prim$求最小生成树,开始用的$double$类型$\%lf$控制精度$g++$不停地wa后改为$float,\%f$过了/(ㄒoㄒ)/~~
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<set>
using std::set;
using std::pair;
using std::swap;
using std::multiset;
using std::priority_queue;
#define pb(e) push_back(e)
#define sz(c) (int)(c).size()
#define mp(a, b) make_pair(a, b)
#define all(c) (c).begin(), (c).end()
#define iter(c) __typeof((c).begin())
#define cls(arr, val) memset(arr, val, sizeof(arr))
#define cpresent(c, e) (find(all(c), (e)) != (c).end())
#define rep(i, n) for(int i = 0; i < (int)n; i++)
#define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
const int N = 110;
const int INF = 0x3f3f3f3f;
typedef unsigned long long ull;
struct P {
float x, y;
P(float i = 0.0, float j = 0.0) :x(i), y(j) {}
inline float calc(const P &k) const {
return sqrt((x - k.x) * (x - k.x) + (y - k.y) * (y - k.y));
}
}A[N];
struct PDI {
int v;
float s;
PDI(int i = 0, float j = 0.0) :v(i), s(j) {}
inline bool operator<(const PDI &k) const {
return s > k.s;
}
};
struct Prim {
bool vis[N];
int tot, head[N];
float mincost[N];
struct edge { int to; float w; int next; }G[(N * N) << 1];
inline void init(int n) {
tot = 0;
rep(i, n + 1) {
head[i] = -1;
vis[i] = false;
mincost[i] = INF;
}
}
inline void add_edge(int u, int v, float w) {
G[tot] = (edge){ v, w, head[u] }; head[u] = tot++;
}
inline void built(int n) {
rep(i, n) scanf("%f %f", &A[i].x, &A[i].y);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j) continue;
add_edge(i + 1, j + 1, A[i].calc(A[j]));
}
}
}
inline void prim(int s = 1) {
float ans = 0.0;
priority_queue<PDI> q;
q.push(PDI(s));
for (int i = head[s]; ~i; i = G[i].next) {
edge &e = G[i];
q.push(PDI(e.to, mincost[e.to] = e.w));
}
vis[s] = true;
while (!q.empty()) {
PDI t = q.top(); q.pop();
int u = t.v;
if (vis[u]) continue;
vis[u] = true;
ans += mincost[u];
for (int i = head[u]; ~i; i = G[i].next) {
edge &e = G[i];
if (mincost[e.to] > e.w && !vis[e.to]) {
q.push(PDI(e.to, mincost[e.to] = e.w));
}
}
}
printf("%.2f\n", ans);
}
inline void solve(int n) {
init(n), built(n), prim();
}
}go;
int main() {
#ifdef LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w+", stdout);
#endif
int n;
while (~scanf("%d", &n)) {
go.solve(n);
}
return 0;
}
poj 2560 Freckles的更多相关文章
- POJ 2560 Freckles Prime问题解决算法
这个问题正在寻求最小生成树. 给定节点的坐标,那么我们需要根据各个点之间的这些坐标来计算距离. 除了这是标准的Prime算法的,能源利用Prime基本上,你可以使用Kruskal. 经典的算法必须填写 ...
- Poj(2560),最小生成树,Prim
题目链接:http://poj.org/problem?id=2560 只想说“全都是套路”,关键建图. #include <stdio.h> #include <string.h& ...
- POJ 2560
#include<iostream> #include<algorithm> #include<cmath> #include<iomanip> #de ...
- 最小生成树之Kruskal
模板题,学习一下最小生成树的Kruskal算法 对于一个连通网(连通带权图,假定每条边上的权均为大于零的实数)来说,每棵树的权(即树中所有边的权值总和)也可能不同 具有权最小的生成树称为最小生成树 生 ...
- 8月清北学堂培训 Day5
今天是杨思祺老师的讲授~ 最短路练习题: POJ 1125 Stockbroker Grapevine 有 N 个股票经济人可以互相传递消息,他们之间存在一些单向的通信路径.现在有一个消息要由某个人开 ...
- DP&图论 DAY 5 上午
DP&图论 DAY 5 上午 POJ 1125 Stockbroker Grapevine 有 N 个股票经济人可以互相传递消息,他们之间存在一些单向的通信路径.现在有一个消息要由某个人开 ...
- 又是图论.jpg
BZOJ 2200 道路和航线重讲ww: FJ 正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到 T 个城镇 (1 ≤ T ≤ 25000),编号为 1 到 T.这些城镇之间通过 R 条 ...
- 【转载】图论 500题——主要为hdu/poj/zoj
转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...
- POJ 1135.Domino Effect Dijkastra算法
Domino Effect Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10325 Accepted: 2560 De ...
随机推荐
- 【测试】在hr用户下自行创建T1和T2表写一条SQL语句,(NL连接)
SQL> select t1.* from t1,t2 where t1.object_id=t2.object_id; rows selected. Execution Plan ------ ...
- MSP430F149学习之路——捕获/比较模式
1.捕获模式 #include <msp430x14x.h> unsigned ,last1=; unsigned ,j=; void mian(void) { WDTCTL = WDTP ...
- java学习之(内部类)
大部分时候,类被定义成一个独立的程序单元,在某些情况下,也会把一个类放在另一个类的内部定义,这个定义在其他类内部的类就被称为内部类,内部类有如下特点: 1.内部类提供了更好的封闭,可以把内部类隐 ...
- css定义表格样式
table.gridtable { font-family: verdana,arial,sans-serif; font-size:11px; color:#333333; border-width ...
- Oracle笔记 十四、查询XML操作、操作系统文件
--1.随机数 select dbms_random.value from dual; select mod(dbms_random.random, 10) from dual; --0-9随机数 s ...
- 为Magento2新主题添加使用Grunt
Go to \dev\tools\grunt\configs, open your themes.js file, and change it according to the following e ...
- CentOS学习笔记--防火墙iptables
Linux 的防火墙:iptables iptables是封包过滤软件,Linux内核2.6以上都是这款软件.本节节选自 鸟哥的 Linux 私房菜 -- 服务器架设篇 第九章.防火墙与 NAT 服 ...
- asp.net mvc JQGrid
http://mikedormitorio.azurewebsites.net/BlogPost/jqgrid-series-part-1-loading-data-to-a-jqgrid-on-an ...
- php设计模式之单例、多例设计模式
单例(Singleton)模式和不常见的多例(Multiton)模式控制着应用程序中类的数量.如模式名称,单例只能实例化一次,只有一个对象,多例模式可以多次实例化. 基于Singleton的特性,我们 ...
- PHP入门基础(一)——标记风格、注释、表单获取、字符串类型、变量解析
PHP标记风格: //XML风格//推荐的标记风格,可以在XML文档中使用 <?php echo '<p>XML Style</p>'; ?> //简短风格——需启 ...