首先,必然要有$(a+ci)-(a+bi)+1<d$,因此$(c-b)i\le d-2$,即$i\le \lfloor\frac{d-2}{c-b}\rfloor$

此时,$[a+bi,a+ci]$中不存在$d$的倍数,当且仅当$\lfloor\frac{a+bi-1}{d}\rfloor=\lfloor\frac{c+bi}{d}\rfloor$,同时两者之差不大于2,因此可以通过求和来统计,即$n-\sum_{i=1}^{n}\lfloor\frac{a+ci}{d}\rfloor-\lfloor\frac{a+bi-1}{d}\rfloor$(其中$n=\lfloor\frac{d-2}{c-b}\rfloor$)

这两个式子是类似的,因此可以仅考虑$\sum_{i=1}^{n}\lfloor\frac{a+ci}{d}\rfloor$

将后者用1累加的形式来表示,即$\sum_{i=1}^{n}\sum_{1\le j\le \lfloor\frac{a+ci}{d}\rfloor}1$

调换枚举顺序,令$n'=\lfloor\frac{a+cn}{d}\rfloor$,因此即$\sum_{j=1}^{n'}\sum_{1\le i\le n,j\le \lfloor\frac{a+ci}{d}\rfloor}1$

考虑$j\le \lfloor\frac{a+ci}{d}\rfloor$,改为用$j$来限制$i$,即$\lceil\frac{jd-a}{c}\rceil=\lfloor\frac{jd-a+c-1}{c}\rfloor\le i\le n$

同时注意到$a<d$且$j\ge 1$,即保证了$\lfloor\frac{jd-a+c-1}{c}\rfloor\ge 1$

再将后者1的累加展开,即$\sum_{j=1}^{n'}n-\lfloor\frac{jd-a+c-1}{c}\rfloor+1=n'(n+1)-\sum_{j=1}^{n'}\lfloor\frac{(c-a-1)+jd}{c}\rfloor$

因此,即记$f(n,a,c,d)=\sum_{i=1}^{n}\max(\lfloor\frac{a+ci}{d}\rfloor,0)$,则$f(n,a,c,d)=n'(n+1)-f(n',c-a-1,d,c)$

另外,$f(n,a,c,d)$还有以下变换来规范其形式,即:

1.若$a\ge d$,$f(n,a,c,d)=f(n,a\ mod\ d,c,d)+\lfloor\frac{a}{d}\rfloor n$

2.若$a<0$,$f(n,a,c,d)=f(n,a+kd,c,d)-kn$(其中$k=\lfloor\frac{-a+d-1}{d}\rfloor$)

3.若$c\ge d$,$f(n,a,c,d)=f(n,a,c\ mod\ d,d)+\lfloor\frac{c}{d}\rfloor{n+1\choose 2}$

4.若$c=0$,$f(n,a,c,d)=0$

注意到其关于$(c,d)$的变换形式与扩展欧几里得相同,因此复杂度为$o(\log_{2}d)$

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define ll long long
4 int t,a,b,c,d;
5 ll n;#include<bits/stdc++.h>
6 using namespace std;
7 #define ll long long
8 int t,a,b,c,d;
9 ll n;
10 ll f(ll n,int a,int c,int d){
11 if (a>=d)return f(n,a%d,c,d)+(a/d)*n;
12 if (a<0){
13 int k=(-a+d-1)/d;
14 return f(n,a+k*d,c,d)-k*n;
15 }
16 if (c>=d)return f(n,a,c%d,d)+(n+1)*n/2*(c/d);
17 if (!c)return 0;
18 ll nn=(a+c*n)/d;
19 return nn*(n+1)-f(nn,c-a-1,d,c);
20 }
21 int main(){
22 scanf("%d",&t);
23 while (t--){
24 scanf("%d%d%d%d",&a,&b,&c,&d);
25 n=(d-2)/(c-b);
26 printf("%lld\n",n-f(n,a,c,d)+f(n,a-1,b,d));
27 }
28 }
29 ll f(ll n,int a,int c,int d){
30 if (a>=d)return f(n,a%d,c,d)+(a/d)*n;
31 if (a<0){
32 int k=(-a+d-1)/d;
33 return f(n,a+k*d,c,d)-k*n;
34 }
35 if (c>=d)return f(n,a,c%d,d)+(n+1)*n/2*(c/d);
36 if (!c)return 0;
37 ll nn=(a+c*n)/d;
38 return nn*(n+1)-f(nn,c-a-1,d,c);
39 }
40 int main(){
41 scanf("%d",&t);
42 while (t--){
43 scanf("%d%d%d%d",&a,&b,&c,&d);
44 n=(d-2)/(c-b);
45 printf("%lld\n",n-f(n,a,c,d)+f(n,a-1,b,d));
46 }
47 }

[atARC111E]Simple Math 3的更多相关文章

  1. hdu 1757 A Simple Math Problem (乘法矩阵)

    A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  2. HDU1757 A Simple Math Problem 矩阵快速幂

    A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  3. hdu------(1757)A Simple Math Problem(简单矩阵快速幂)

    A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  4. FZYZ-2071 A Simple Math Problem IX

    P2071 -- A Simple Math Problem IX 时间限制:1000MS      内存限制:262144KB 状态:Accepted      标签:    数学问题-博弈论    ...

  5. A Simple Math Problem(矩阵快速幂)(寒假闭关第一题,有点曲折啊)

    A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...

  6. HDU 1757 A Simple Math Problem (矩阵快速幂)

    题目 A Simple Math Problem 解析 矩阵快速幂模板题 构造矩阵 \[\begin{bmatrix}a_0&a_1&a_2&a_3&a_4&a ...

  7. HDU 1757 A Simple Math Problem(矩阵)

    A Simple Math Problem [题目链接]A Simple Math Problem [题目类型]矩阵快速幂 &题解: 这是一个模板题,也算是入门了吧. 推荐一个博客:点这里 跟 ...

  8. HDU 1757 A Simple Math Problem (矩阵乘法)

    A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  9. hdu 5974 A Simple Math Problem

    A Simple Math Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Ot ...

随机推荐

  1. 解决VM 与 Device/Credential Guard 不兼容

    通过命令关闭Hyper-V(控制面板关闭Hyper-V起不到决定性作用,要彻底关闭Hyper-V) 以管理员身份运行Windows Powershell (管理员)(Windows键+X) 运行下面命 ...

  2. Multidimension Tools(多维工具)

    多维工具 # Process: 创建 NetCDF 栅格图层 arcpy.MakeNetCDFRasterLayer_md("", "", "&quo ...

  3. PTA习题6-8 统计一行文本的单词个数 (15分)

    参考<c和指针>里面运用strtok函数打印空白标记符(如\n,\t)的程序改写而成的代码 在之前我自己写了一个60行的链表版本的统计程序 相比之下这个strtok函数的程序要简洁明了的多 ...

  4. Mybatis 一对多延迟加载,并且子查询中与主表字段不对应 (19)

    Mybatis  一对多延迟加载,并且子查询中与主表字段不对应应用说明. 实现一对多关联(懒加载),一个教研组对应多个教师,既:教师的教研编号与教研组的教研编号关联,并且教师关联教研组外键与教研组编号 ...

  5. mysql all_ip_test局域网IP测试工具,有需要的改一改.

    1 import threading 2 import subprocess 3 import pymysql 4 # threading.Lock() 5 6 7 class Link(object ...

  6. Java:HashMap类小记

    Java:HashMap类小记 对 Java 中的 HashMap类,做一个微不足道的小小小小记 概述 HashMap:存储数据采用的哈希表结构,元素的存取顺序不能保证一致.由于要保证键的唯一.不重复 ...

  7. [no_code][Beta]项目展示博客

    $( "#cnblogs_post_body" ).catalog() 团队项目链接 Beta阶段核心开发点: github 前端 github 后端 github OCR文档-含 ...

  8. 热身训练1 Calculator

    题目出处:Calculator 简要题意: 你有一个确定的函数,f(x)=+...*...^...,其中共有n个操作,从左到右依次计算. 共有m次询问,我们每次询问,1.会修改f(x)中的操作:2.输 ...

  9. 【java设计模式】(10)---模版方法模式(案例解析)

    一.概念 1.概念 模板方法模式是一种基于继承的代码复用技术,它是一种类行为型模式. 它定义一个操作中的算法的骨架,而将一些步骤延迟到子类中.模板方法使得子类可以不改变一个算法的结构即可重定义该算法的 ...

  10. 【数据结构&算法】04-线性表

    目录 前言 线性表的定义 线性表的数据类型&操作 线性表操作 数据类型定义 复杂操作 线性表的顺序存储结构 顺序存储结构的定义 顺序存储方式 数据长度和线性表长度的区别 地址的计算方法 顺序存 ...