[atARC111E]Simple Math 3
首先,必然要有$(a+ci)-(a+bi)+1<d$,因此$(c-b)i\le d-2$,即$i\le \lfloor\frac{d-2}{c-b}\rfloor$
此时,$[a+bi,a+ci]$中不存在$d$的倍数,当且仅当$\lfloor\frac{a+bi-1}{d}\rfloor=\lfloor\frac{c+bi}{d}\rfloor$,同时两者之差不大于2,因此可以通过求和来统计,即$n-\sum_{i=1}^{n}\lfloor\frac{a+ci}{d}\rfloor-\lfloor\frac{a+bi-1}{d}\rfloor$(其中$n=\lfloor\frac{d-2}{c-b}\rfloor$)
这两个式子是类似的,因此可以仅考虑$\sum_{i=1}^{n}\lfloor\frac{a+ci}{d}\rfloor$
将后者用1累加的形式来表示,即$\sum_{i=1}^{n}\sum_{1\le j\le \lfloor\frac{a+ci}{d}\rfloor}1$
调换枚举顺序,令$n'=\lfloor\frac{a+cn}{d}\rfloor$,因此即$\sum_{j=1}^{n'}\sum_{1\le i\le n,j\le \lfloor\frac{a+ci}{d}\rfloor}1$
考虑$j\le \lfloor\frac{a+ci}{d}\rfloor$,改为用$j$来限制$i$,即$\lceil\frac{jd-a}{c}\rceil=\lfloor\frac{jd-a+c-1}{c}\rfloor\le i\le n$
同时注意到$a<d$且$j\ge 1$,即保证了$\lfloor\frac{jd-a+c-1}{c}\rfloor\ge 1$
再将后者1的累加展开,即$\sum_{j=1}^{n'}n-\lfloor\frac{jd-a+c-1}{c}\rfloor+1=n'(n+1)-\sum_{j=1}^{n'}\lfloor\frac{(c-a-1)+jd}{c}\rfloor$
因此,即记$f(n,a,c,d)=\sum_{i=1}^{n}\max(\lfloor\frac{a+ci}{d}\rfloor,0)$,则$f(n,a,c,d)=n'(n+1)-f(n',c-a-1,d,c)$
另外,$f(n,a,c,d)$还有以下变换来规范其形式,即:
1.若$a\ge d$,$f(n,a,c,d)=f(n,a\ mod\ d,c,d)+\lfloor\frac{a}{d}\rfloor n$
2.若$a<0$,$f(n,a,c,d)=f(n,a+kd,c,d)-kn$(其中$k=\lfloor\frac{-a+d-1}{d}\rfloor$)
3.若$c\ge d$,$f(n,a,c,d)=f(n,a,c\ mod\ d,d)+\lfloor\frac{c}{d}\rfloor{n+1\choose 2}$
4.若$c=0$,$f(n,a,c,d)=0$
注意到其关于$(c,d)$的变换形式与扩展欧几里得相同,因此复杂度为$o(\log_{2}d)$

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define ll long long
4 int t,a,b,c,d;
5 ll n;#include<bits/stdc++.h>
6 using namespace std;
7 #define ll long long
8 int t,a,b,c,d;
9 ll n;
10 ll f(ll n,int a,int c,int d){
11 if (a>=d)return f(n,a%d,c,d)+(a/d)*n;
12 if (a<0){
13 int k=(-a+d-1)/d;
14 return f(n,a+k*d,c,d)-k*n;
15 }
16 if (c>=d)return f(n,a,c%d,d)+(n+1)*n/2*(c/d);
17 if (!c)return 0;
18 ll nn=(a+c*n)/d;
19 return nn*(n+1)-f(nn,c-a-1,d,c);
20 }
21 int main(){
22 scanf("%d",&t);
23 while (t--){
24 scanf("%d%d%d%d",&a,&b,&c,&d);
25 n=(d-2)/(c-b);
26 printf("%lld\n",n-f(n,a,c,d)+f(n,a-1,b,d));
27 }
28 }
29 ll f(ll n,int a,int c,int d){
30 if (a>=d)return f(n,a%d,c,d)+(a/d)*n;
31 if (a<0){
32 int k=(-a+d-1)/d;
33 return f(n,a+k*d,c,d)-k*n;
34 }
35 if (c>=d)return f(n,a,c%d,d)+(n+1)*n/2*(c/d);
36 if (!c)return 0;
37 ll nn=(a+c*n)/d;
38 return nn*(n+1)-f(nn,c-a-1,d,c);
39 }
40 int main(){
41 scanf("%d",&t);
42 while (t--){
43 scanf("%d%d%d%d",&a,&b,&c,&d);
44 n=(d-2)/(c-b);
45 printf("%lld\n",n-f(n,a,c,d)+f(n,a-1,b,d));
46 }
47 }
[atARC111E]Simple Math 3的更多相关文章
- hdu 1757 A Simple Math Problem (乘法矩阵)
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- HDU1757 A Simple Math Problem 矩阵快速幂
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- hdu------(1757)A Simple Math Problem(简单矩阵快速幂)
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- FZYZ-2071 A Simple Math Problem IX
P2071 -- A Simple Math Problem IX 时间限制:1000MS 内存限制:262144KB 状态:Accepted 标签: 数学问题-博弈论 ...
- A Simple Math Problem(矩阵快速幂)(寒假闭关第一题,有点曲折啊)
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU 1757 A Simple Math Problem (矩阵快速幂)
题目 A Simple Math Problem 解析 矩阵快速幂模板题 构造矩阵 \[\begin{bmatrix}a_0&a_1&a_2&a_3&a_4&a ...
- HDU 1757 A Simple Math Problem(矩阵)
A Simple Math Problem [题目链接]A Simple Math Problem [题目类型]矩阵快速幂 &题解: 这是一个模板题,也算是入门了吧. 推荐一个博客:点这里 跟 ...
- HDU 1757 A Simple Math Problem (矩阵乘法)
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- hdu 5974 A Simple Math Problem
A Simple Math Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Ot ...
随机推荐
- Sentry 监控 - Snuba 数据中台架构(Query Processing 简介)
系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Maps Sentry For ...
- 使用node-gyp编写简单的node原生模块
通过样例,让我们了解如何编写一个node的原生模块.当然,这篇文章还有一个目的,是为了方便以后编写关于node-gyp的文章,搭建初始环境. 基于node-addon-api 基于node-addon ...
- 干货分享之Spring框架源码解析01-(xml配置解析)
记录并分享一下本人学习spring源码的过程,有什么问题或者补充会持续更新.欢迎大家指正! 环境: spring5.X + idea Spring 是一个工厂,是一个负责对象的创建和维护的工厂.它给我 ...
- uoj22 外星人(dp)
题目大意: 给定一个\(n\)个数的序列\(a\),给定一个\(x\),其中\(a\)数组可以进行顺序的调换,每一个\(a_i\)都能使$x=x \mod a_i \(, 求最后经过一系列计算后的\) ...
- Netty 进阶
1. 粘包与半包 1.1 粘包现象 服务端代码 public class HelloWorldServer { static final Logger log = LoggerFactory.getL ...
- 初学Python-day12 装饰器函数
装饰器 1.概念 本质就是一个Python函数,其他函数在本身不变的情况下去增加额外的功能,装饰器的返回值是一个函数. 常用的场景:插入日志,事务处理,缓存,权限校验等. 2.普通函数回顾 1 def ...
- props&attrs provide inject
defineComponent({ props: {// 1 } setup (props, {attrs, emit}) { } }) 一,组件传值: 父传子: 1.如果没有在定义的props中声明 ...
- VS2015+OpenCV+Qt
VS2015+OpenCV+Qt 01.OpenCV 下载 进入官网链接: https://opencv.org,下载所需要的版本: 下载完成后直接双击,选择解压路径,解压到响应的文件夹中: 若之后需 ...
- BUAA软件工程结对项目作业
BUAA软件工程结对项目 小组成员:16005001,17373192 1.教学班级和项目地址 项目 内容 这个作业属于哪个课程 博客园班级连接 这个作业的要求在哪里 结对项目作业 我在这个课程的目标 ...
- 【学习笔记】Vizing 定理
图染色问题的经典结论 定义 称一个边染色方案合法当且仅当每个顶点连出的所有边的颜色都互不相同,如果此时出现了 \(k\) 个颜色那么称该方案是图的一组 \(k\) 染色 一张无向图的边着色数为最小的 ...