LA3942字典树+递推
题意:
给你一个字典,最多4000个单词,每个单词长度最多是100,然后给你一个串,问你这个子串可以被那些单词组合的组合数,比如字典里有4个单词a b ab cd,然后给你一个串abcd则abcd = a+b+cd,ab+cd一共两种组合。输出组合数对20071027取余(白书上写错了写的是20071207)
思路:
我们可以找到一个递推公式,d[i] = sum(i + len[x]),解释一下这个,d[i]表示的是以i个位置为开头的字符串的组合个数,就是[i,i+1,i+2..len-1],而x则是以i开头的那个串的前缀,这样就不难理解了吧,整体意思就是如果defg = 5,那么只要存在bc,就可以得到以a开头的abcdefg可以加上5了,然后就是优化时间,因为直接暴力写的话30000*4000*判断前缀匹配,时间复杂度接受不了,既然是前缀,我们可以想到字典树,我们可以把所有的4000个单词都放到字典里,然后在匹配的时候如果碰到单词末尾节点,直接就是找到满足条件,更新左右值,就行了,具体看代码,很容易理解。
PS不要把30000的那个字符串拆开放到字典树里,一开始我就是这么想的,结果还没敲完意识到这样内存会很大,很可能会爆内存,还有就是别忽视strlen这个函数的时间复杂度,TLE了一次。
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define N 300000 + 10
#define MOD 20071027
typedef struct Tree
{
Tree *next[26];
int mk;
}Tree;
Tree root;
char Str[N];
long long dp[N];
void BuidTree(char *str)
{
int len = strlen(str);
Tree *p = &root ,*q;
for(int i = 0 ;i < len ;i ++)
{
int id = str[i] - 'a';
if(p -> next[id] == NULL)
{
q = (Tree *)malloc(sizeof(root));
q -> mk = 0;
for(int j = 0 ;j < 26 ;j ++)
q -> next[j] = NULL;
p -> next[id] = q;
p = p -> next[id];
}
else
p = p -> next[id];
}
p -> mk = 1;
}
void Query(char *str ,int ii ,int len)
{
dp[ii] = 0;
Tree *p = &root;
for(int i = ii ;i < len ;i ++)
{
int id = str[i] - 'a';
p = p -> next[id];
if(p == NULL) break;
if(p -> mk) dp[ii] = (dp[ii] + dp[i+1]) % MOD;
}
return ;
}
int main ()
{
int cas = 1 ,i ,n;
char tmp[105];
while(~scanf("%s" ,Str))
{
scanf("%d" ,&n);
for(i = 0 ;i < 26 ;i ++)
root.next[i] = NULL;
for(i = 1 ;i <= n ;i ++)
{
scanf("%s" ,tmp);
BuidTree(tmp);
}
int len = strlen(Str);
dp[len] = 1;
for(i = len - 1 ;i >= 0 ;i --)
{
Query(Str ,i ,len);//把len直接传下去,别在里面从求,会超时。
}
printf("Case %d: %lld\n" ,cas ++ ,dp[0]);
}
}
LA3942字典树+递推的更多相关文章
- [BZOJ1089][SCOI2003]严格n元树(递推+高精度)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最 ...
- bzoj 1089 SCOI2003严格n元树 递推
挺好想的,就是一直没调过,我也不知道哪儿的错,对拍也拍了,因为数据范围小,都快手动对拍了也不知道 哪儿错了.... 我们定义w[i]代表深度<=i的严格n元树的个数 那么最后w[d]-w[d-1 ...
- Codeforces 446C 线段树 递推Fibonacci公式
聪哥推荐的题目 区间修改和区间查询,但是此题新颖之处就在于他的区间修改不是个定值,而是从L 到 R 分别加 F1.F2....Fr-l+1 (F为斐波那契数列) 想了一下之后,觉得用fib的前缀和来解 ...
- BZOJ 1089 严格n元树 (递推+高精度)
题解:用a[i]表<=i时有几种树满足度数要求,那么这样就可以递归了,a[i]=a[i-1]^n+1.n个节点每个有a[i-1]种情况,那么将其相乘,最后加上1,因为深度为0也算一种.那么答案就 ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- 【BZOJ】1089: [SCOI2003]严格n元树(递推+高精度/fft)
http://www.lydsy.com/JudgeOnline/problem.php?id=1089 题意:求深度为d的n元树数目.(0<n<=32, 0<=d<=16) ...
- HDU 4747 Mex 递推/线段树
题目链接: acm.hdu.edu.cn/showproblem.php?pid=4747 Mex Time Limit: 15000/5000 MS (Java/Others)Memory Limi ...
- 【主席树维护mex】 【SG函数递推】 Problem H. Cups and Beans 2017.8.11
Problem H. Cups and Beans 2017.8.11 原题: There are N cups numbered 0 through N − 1. For each i(1 ≤ i ...
- ACM学习历程—UESTC 1217 The Battle of Chibi(递推 && 树状数组)(2015CCPC C)
题目链接:http://acm.uestc.edu.cn/#/problem/show/1217 题目大意就是求一个序列里面长度为m的递增子序列的个数. 首先可以列出一个递推式p(len, i) = ...
随机推荐
- 小程序基于Token登录 示意图
- 2020年12月-第02阶段-前端基础-CSS字体样式
CSS字体样式属性调试工具 应用 使用css字体样式完成对字体的设置 使用css外观属性给页面元素添加样式 1.font字体 1.1 font-size:大小 作用: font-size属性用于设置字 ...
- 恭喜!Apache Hudi社区新晋两位Committer
1. 介绍 经过Apache Hudi项目委员会讨论及投票,向WangXiangHu和LiWei 2人发出Committer邀请,2人均已接受邀请并顺利成为Committer,也使得Apache Hu ...
- Nginx重定向到其他端口
location / { # limit_req zone=test_req burst=5 nodelay; return 302 http://$host:3000/; } # 我这里的端口为30 ...
- MIMO OFDM 常用信号检测算法
MIMO OFDM 系统检测算法 1. 前言 MIMO的空分复用技术可以使得系统在系统带宽和发射带宽不变的情况下容易地获得空间分集增益和信道的容量增益.OFDM技术采用多个正交的子载波并行传输数据,使 ...
- 解决图片把父元素向下撑大大约3px问题
现象 bug: 图片在div\li\dt 等 图片把父元素向下撑大大约3px <style> img { width: 30%; //这里由于 ...
- Spring如何解决循环依赖
一.什么是循环依赖 多个bean之间相互依赖,形成了一个闭环. 比如:A依赖于B.B依赖于c.c依赖于A 通常来说,如果问spring容器内部如何解决循环依赖, 一定是指默认的单例Bean中,属性互相 ...
- css字体的属性
1 <!DOCTYPE html> 2 <html lang="en"> 3 <head> 4 <meta charset="U ...
- P1996_约瑟夫问题(JAVA语言)_可能是最简单的解法了!
思路:使用队列模拟. 判断是否为出圈的数.如果不是,把数加入队列尾部:如果是,输出并删除. 题目背景 约瑟夫是一个无聊的人!!! 题目描述 n个人(n<=100)围成一圈,从第一个人开始报数,数 ...
- 利用matplotlib和cmaps根据已有的colormap,重新定义colormap
算法网上这哥们总结的还可以[1] ,但是使用matplotlib自定义colormap自己掌握的还不够,写在这里 希望达到的目标 使用什么样的颜色,可以自己定义 方便的调用其他人的色标, 使用一部分c ...