批处理数据主要有三种方式:

  1. 反复执行单条插入语句
  2. foreach 拼接 sql
  3. 批处理

一、前期准备

基于Spring Boot + Mysql,同时为了省略get/set,使用了lombok,详见pom.xml

1.1 表结构

id 使用数据库自增。

DROP TABLE IF EXISTS `user_info_batch`;
CREATE TABLE `user_info_batch` (
`id` bigint(11) unsigned NOT NULL AUTO_INCREMENT COMMENT '主键id',
`user_name` varchar(100) NOT NULL COMMENT '账户名称',
`pass_word` varchar(100) NOT NULL COMMENT '登录密码',
`nick_name` varchar(30) NOT NULL COMMENT '昵称',
`mobile` varchar(30) NOT NULL COMMENT '手机号',
`email` varchar(100) DEFAULT NULL COMMENT '邮箱地址',
`gmt_create` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`gmt_update` timestamp NULL DEFAULT NULL COMMENT '更新时间',
PRIMARY KEY (`id`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC COMMENT 'Mybatis Batch';

1.2 项目配置文件

细心的你可能已经发现,数据库url 后面跟了一段 rewriteBatchedStatements=true,有什么用呢?先不急,后面会介绍。

# 数据库配置
spring:
datasource:
url: jdbc:mysql://47.111.118.152:3306/mybatis?rewriteBatchedStatements=true
username: mybatis
password: password
driver-class-name: com.mysql.cj.jdbc.Driver
# mybatis
mybatis:
mapper-locations: classpath:mapper/*.xml
type-aliases-package: cn.van.mybatis.batch.entity

1.3 实体类

@Data
@Accessors(chain = true)
public class UserInfoBatchDO implements Serializable {
private Long id; private String userName; private String passWord; private String nickName; private String mobile; private String email; private LocalDateTime gmtCreate; private LocalDateTime gmtUpdate;
}

1.4 UserInfoBatchMapper

public interface UserInfoBatchMapper {

    /** 单条插入
* @param info
* @return
*/
int insert(UserInfoBatchDO info); /**
* foreach 插入
* @param list
* @return
*/
int batchInsert(List<UserInfoBatchDO> list);
}

1.5 UserInfoBatchMapper.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="cn.van.mybatis.batch.mapper.UserInfoBatchMapper"> <insert id="insert" parameterType="cn.van.mybatis.batch.entity.UserInfoBatchDO">
insert into user_info_batch (user_name, pass_word, nick_name, mobile, email, gmt_create, gmt_update)
values (#{userName,jdbcType=VARCHAR}, #{passWord,jdbcType=VARCHAR},#{nickName,jdbcType=VARCHAR}, #{mobile,jdbcType=VARCHAR}, #{email,jdbcType=VARCHAR}, #{gmtCreate,jdbcType=TIMESTAMP}, #{gmtUpdate,jdbcType=TIMESTAMP})
</insert> <insert id="batchInsert">
insert into user_info_batch (user_name, pass_word, nick_name, mobile, email, gmt_create, gmt_update)
values
<foreach collection="list" item="item" separator=",">
(#{item.userName,jdbcType=VARCHAR}, #{item.passWord,jdbcType=VARCHAR}, #{item.nickName,jdbcType=VARCHAR}, #{item.mobile,jdbcType=VARCHAR}, #{item.email,jdbcType=VARCHAR}, #{item.gmtCreate,jdbcType=TIMESTAMP}, #{item.gmtUpdate,jdbcType=TIMESTAMP})
</foreach>
</insert>
</mapper>

1.6 预备数据

为了方便测试,抽离了几个变量,并进行提前加载。

    private List<UserInfoBatchDO> list = new ArrayList<>();
private List<UserInfoBatchDO> lessList = new ArrayList<>();
private List<UserInfoBatchDO> lageList = new ArrayList<>();
private List<UserInfoBatchDO> warmList = new ArrayList<>();
// 计数工具
private StopWatch sw = new StopWatch();
  • 为了方便组装数据,抽出了一个公共方法。
    private List<UserInfoBatchDO> assemblyData(int count){
List<UserInfoBatchDO> list = new ArrayList<>();
UserInfoBatchDO userInfoDO;
for (int i = 0;i < count;i++){
userInfoDO = new UserInfoBatchDO()
.setUserName("Van")
.setNickName("风尘博客")
.setMobile("17098705205")
.setPassWord("password")
.setGmtUpdate(LocalDateTime.now());
list.add(userInfoDO);
}
return list;
}
  • 预热数据
    @Before
public void assemblyData() {
list = assemblyData(200000);
lessList = assemblyData(2000);
lageList = assemblyData(1000000);
warmList = assemblyData(5);
}

二、反复执行单条插入语句

可能‘懒’的程序员会这么做,很简单,直接在原先单条insert语句上嵌套一个for循环。

2.1 对应 mapper 接口

int insert(UserInfoBatchDO info);

2.2 测试方法

因为这种方法太慢,所以数据降低到 2000

@Test
public void insert() {
log.info("【程序热身】");
for (UserInfoBatchDO userInfoBatchDO : warmList) {
userInfoBatchMapper.insert(userInfoBatchDO);
}
log.info("【热身结束】");
sw.start("反复执行单条插入语句");
// 这里插入 20w 条太慢了,所以我只插入了 2000 条
for (UserInfoBatchDO userInfoBatchDO : lessList) {
userInfoBatchMapper.insert(userInfoBatchDO);
}
sw.stop();
log.info("all cost info:{}",sw.prettyPrint());
}

2.3 执行时间

  • 第一次
-----------------------------------------
ms % Task name
-----------------------------------------
59887 100% 反复执行单条插入语句
  • 第二次
-----------------------------------------
ms % Task name
-----------------------------------------
64853 100% 反复执行单条插入语句
  • 第三次
-----------------------------------------
ms % Task name
-----------------------------------------
58235 100% 反复执行单条插入语句

该方式插入2000 条数据,执行三次的平均时间:60991 ms

三、foreach 拼接SQL

3.1 对应mapper 接口

int batchInsert(List<UserInfoBatchDO> list);

3.2 测试方法

该方式和下一种方式都采用20w条数据测试。

@Test
public void batchInsert() {
log.info("【程序热身】");
for (UserInfoBatchDO userInfoBatchDO : warmList) {
userInfoBatchMapper.insert(userInfoBatchDO);
}
log.info("【热身结束】");
sw.start("foreach 拼接 sql");
userInfoBatchMapper.batchInsert(list);
sw.stop();
log.info("all cost info:{}",sw.prettyPrint());
}

3.3 执行时间

  • 第一次
-----------------------------------------
ms % Task name
-----------------------------------------
18835 100% foreach 拼接 sql
  • 第二次
-----------------------------------------
ms % Task name
-----------------------------------------
17895 100% foreach 拼接 sql
  • 第三次
-----------------------------------------
ms % Task name
-----------------------------------------
19827 100% foreach 拼接 sql

该方式插入20w 条数据,执行三次的平均时间:18852 ms

四、批处理

该方式 mapperxml 复用了 2.1

4.1 rewriteBatchedStatements 参数

我在测试一开始,发现改成 Mybatis Batch提交的方法都不起作用,实际上在插入的时候仍然是一条条记录的插,而且速度远不如原来 foreach 拼接SQL的方法,这是非常不科学的。

后来才发现要批量执行的话,连接URL字符串中需要新增一个参数:rewriteBatchedStatements=true

  • rewriteBatchedStatements参数介绍

MySqlJDBC连接的url中要加rewriteBatchedStatements参数,并保证5.1.13以上版本的驱动,才能实现高性能的批量插入。MySql JDBC驱动在默认情况下会无视executeBatch()语句,把我们期望批量执行的一组sql语句拆散,一条一条地发给MySql数据库,批量插入实际上是单条插入,直接造成较低的性能。只有把rewriteBatchedStatements参数置为true, 驱动才会帮你批量执行SQL。这个选项对INSERT/UPDATE/DELETE都有效。

4.2 批处理准备

  • 手动注入 SqlSessionFactory
    @Resource
private SqlSessionFactory sqlSessionFactory;
  • 测试代码
@Test
public void processInsert() {
log.info("【程序热身】");
for (UserInfoBatchDO userInfoBatchDO : warmList) {
userInfoBatchMapper.insert(userInfoBatchDO);
}
log.info("【热身结束】");
sw.start("批处理执行 插入");
// 打开批处理
SqlSession session = sqlSessionFactory.openSession(ExecutorType.BATCH);
UserInfoBatchMapper mapper = session.getMapper(UserInfoBatchMapper.class);
for (int i = 0,length = list.size(); i < length; i++) {
mapper.insert(list.get(i));
//每20000条提交一次防止内存溢出
if(i%20000==19999){
session.commit();
session.clearCache();
}
}
session.commit();
session.clearCache();
sw.stop();
log.info("all cost info:{}",sw.prettyPrint());
}

4.3 执行时间

  • 第一次
-----------------------------------------
ms % Task name
-----------------------------------------
09346 100% 批处理执行 插入
  • 第二次
-----------------------------------------
ms % Task name
-----------------------------------------
08890 100% 批处理执行 插入
  • 第三次
-----------------------------------------
ms % Task name
-----------------------------------------
09042 100% 批处理执行 插入

该方式插入20w 条数据,执行三次的平均时间:9092 ms

4.4 如果数据更大

当我把数据扩大到 100w 时,foreach 拼接 sql 的方式已经无法完成插入了,所以我只能测试批处理的插入时间。

测试时,仅需将 【4.2】测试代码中的 list 切成 lageList 测试即可。

  • 第一次
-----------------------------------------
ms % Task name
-----------------------------------------
32419 100% 批处理执行 插入
  • 第二次
-----------------------------------------
ms % Task name
-----------------------------------------
31935 100% 批处理执行 插入
  • 第三次
-----------------------------------------
ms % Task name
-----------------------------------------
33048 100% 批处理执行 插入

该方式插入100w 条数据,执行三次的平均时间:32467 ms

五、总结

批量插入方式 数据量 执行三次的平均时间
循环插入单条数据 2000 60991 ms
foreach 拼接sql 20w 18852 ms
批处理 20w 9092 ms
批处理 100w 32467 ms
  1. 循环插入单条数据虽然效率极低,但是代码量极少,数据量较小时可以使用,但是数据量较大禁止使用,效率太低了;
  2. foreach 拼接sql的方式,使用时有大段的xml和sql语句要写,很容易出错,虽然效率尚可,但是真正应对大量数据的时候,依旧无法使用,所以不推荐使用;
  3. 批处理执行是有大数据量插入时推荐的做法,使用起来也比较方便。

本文示例代码

【MyBatis】几种批量插入效率的比较的更多相关文章

  1. mybatis三种批量插入方式对比

    <insert id="addInquiryQA" parameterType="java.util.List"> insert into inqu ...

  2. Mybatis与JDBC批量插入MySQL数据库性能测试及解决方案

    转自http://www.cnblogs.com/fnz0/p/5713102.html 不知道自己什么时候才有这种钻研精神- -. 1      背景 系统中需要批量生成单据数据到数据库表,所以采用 ...

  3. MyBatis 使用 foreach 批量插入

    MyBatis 使用 foreach 批量插入 参考博文 老司机学习MyBatis之动态SQL使用foreach在MySQL中批量插入 使用MyBatis一次性插入多条数据时候可以使用 <for ...

  4. mybatis oracle mysql 批量插入时的坑爹问题--需谨记

    mybatis oracle mysql 批量插入一.oracle的批量插入方式insert into db(id, zgbh, shbzh) select '1', '2', '3' from du ...

  5. sqlserver 下三种批量插入数据的方法

    本文将介绍三种批量插入数据的方法,需要的朋友可以参考下 本文将介绍三种批量插入数据的方法.第一种方法是使用循环语句逐个将数据项插入到数据库中:第二种方法使用的是SqlBulkCopy,使您可以用其他源 ...

  6. 关于 MyBatis MyBatis-Spring Jdbc 批量插入的各种比较分析

    因为目前SME项目中编写了一套蜘蛛爬虫程序,所以导致插入数据库的数据量剧增.就项目中使用到的3种DB插入方式进行了一个Demo分析: 具体代码如下: 1: MyBatis 开启Batch方式,最普通的 ...

  7. mybatis使用序列批量插入数据

    mybatis只提供了单条数据的插入,要批量插入数据我们可以使用循环一条条的插入,但是这样做的效率太低下,每插入一条数据就需要提交一次,如果数据量几百上千甚至更多,插入性能往往不是我们能接受的,如下例 ...

  8. MyBatis操作Oracle批量插入 ORA-00933: SQL 命令未正确结束

    最近在使用MyBatis操作Oracle数据库的时候,进行批量插入数据,思路是封装一个List集合通过Myabtis 的foreach标签进行循环插入,可是搬照Mysql的批量插入会产生 异常 ### ...

  9. mybatis父子表批量插入

    <!--父子表批量插入 --> <insert id="insertBatch" parameterType="com.niwopay.dto.beni ...

随机推荐

  1. Mybatis学习笔记-第一个Mybatis程序

    思路 搭建环境 搭建数据库(略) CREATE DDATABASE CREATE TABLE INSERT VALUES 新建项目 普通Maven项目 删除src文件夹 --> 建立父工程 导入 ...

  2. 靶机BlackMarket

    工具:nmap.dirbuster.dirb.sqlmap.cewl.crunch.hydra 涉及的漏洞:弱口令 垂直越权 SQL注入 CVE-2016-5195脏牛提权(内核竞争提权漏洞) fla ...

  3. BUUCTF-[网鼎杯 2018]Fakebook(SSRF+联合注入绕Waf)

    记一道SSRF配合SQL注入的题. 喜欢在做题之前扫一下网站的目录,扫到了robots.txt文件可以访问,拿到user.php.bak的源码.同时还有flag.php. <?php class ...

  4. Bugku-你必须让他停下来

    这道题使用burpsuite抓包就能做,一开始抓包发到repeater之后flag不一定可以直接得到,原因是flag藏在特定的那张图片后面,我们一直go到那张图片便可以得到flag. 进入题目给的网址 ...

  5. TCP实现聊天

    TCP实现聊天 IO流关闭是简写的,正常写要判断是否为null 客户端:(最好捕获异常) 1.连接服务器Socket 2.发送消息 package net.TCPChat; import java.i ...

  6. 4、关于numpy.random.seed()的使用说明

    定义:seed( ) 用于指定随机数生成时所用算法开始的整数值,如果使用相同的seed( )值,则每次生成的随即数都相同,如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差 ...

  7. MySQL-09-SQL执行计划

    SQL执行计划获取及分析 介绍 (1)获取到的是优化器选择完成的,他认为代价最小的执行计划. 作用: 语句执行前,先看执行计划信息,可以有效的防止性能较差的语句带来的性能问题. 如果业务中出现了慢语句 ...

  8. Nmap 简单功能介绍/TCP Header/常见端口

    Nmap:Network Mapper,网络扫描和嗅探的工具包 基本功能有3个: 1.扫描主机端口,嗅探所提供的网络服务 2.探测一组主机是否在线 3.推断主机所用的操作系统,到达主机经过的路由,系统 ...

  9. JIT-动态编译与AOT-静态编译:java/ java/ JavaScript/Dart乱谈

    C 和 C++ 之类的编译语言性能远超Java,但是生成的代码只能在有限的几种系统上执行,这就有了Java的存在基础(JVM-跨平台) 早期 Java 运行时所提供的性能级别远低于 C 和 C++ 之 ...

  10. noip18

    T1 来自cf原题 考场直接暴力枚举 \(A,B\),15pts. 正解: 首先时间的表达式,\(T=\frac{A}{a_{i}}+\frac{B}{b_{i}}\),然后以\(\frac{1}{a ...