论文阅读:MDNet: Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
前言
- Input: 网络的输入是107x107的Bounding box,设置为这个尺寸是为了在卷积层conv3能够得到3x3的feature map。
- Convolutional layers: 网络的卷积层conv1-conv3来自于VGG-M [1]网络,只是输入的大小做了改变。
- Fully connected layers: 接下来的两个全连接层fc4,fc5各有512个输出单元,并设计有ReLUs和Dropouts。fc6是一个二分类层(Domain-specific layers),一共有K个,对应K个Branches(即K个不同的视频),每次训练的时候只有对应该视频的fc6被使用,前面的层都是共享的。
- 用了CNN特征,并且是专门为了tracking设计的网络,用tracking的数据集做了训练
- 有做在线的微调fine-tune,这一点虽然使得速度慢,但是对结果很重要
- Candidates的采样同时也考虑到了尺度,使得对尺度变化的视频也相对鲁棒
- Hard negative mining和bounding box regression这两个策略的使用,使得结果更加精确
论文阅读:MDNet: Learning Multi-Domain Convolutional Neural Networks for Visual Tracking的更多相关文章
- 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...
- [论文阅读] ImageNet Classification with Deep Convolutional Neural Networks(传说中的AlexNet)
这篇文章使用的AlexNet网络,在2012年的ImageNet(ILSVRC-2012)竞赛中获得第一名,top-5的测试误差为15.3%,相比于第二名26.2%的误差降低了不少. 本文的创新点: ...
- 【论文笔记】Pyramidal Convolution: Rethinking Convolutional Neural Networks for Visual Recognition
地址:https://arxiv.org/pdf/2006.11538.pdf github:https://github.com/iduta/pyconv 目前的卷积神经网络普遍使用3×3的卷积神经 ...
- 论文笔记之:Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking
Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking arXiv Paper ...
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
- 卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition
Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalizat ...
- Convolutional Neural Networks for Visual Recognition
http://cs231n.github.io/ 里面有很多相当好的文章 http://cs231n.github.io/convolutional-networks/ Table of Cont ...
- Convolutional Neural Networks for Visual Recognition 1
Introduction 这是斯坦福计算机视觉大牛李菲菲最新开设的一门关于deep learning在计算机视觉领域的相关应用的课程.这个课程重点介绍了deep learning里的一种比较流行的模型 ...
- Convolutional Neural Networks for Visual Recognition 8
Convolutional Neural Networks (CNNs / ConvNets) 前面做了如此漫长的铺垫,现在终于来到了课程的重点.Convolutional Neural Networ ...
随机推荐
- UT之最后一测
经过前面几次文章的分享的UT的相关知识,今天接着分享UT相关最后一测文章,希望对大家在UT的学习中有一点点的帮助. Spring集成测试 有时候我们需要在跑起来的Spring环境中验证,Spring ...
- 概A第二章测试
以下判断题全是(√) 问题 1 得 10 分,满分 10 分 问题 2 得 10 分,满分 10 分 0-1分布相当于一个特殊的二项分布b(1,p) ...
- Faiss源码剖析:类结构分析
摘要:在下文中,我将尝试通过Faiss源码中各种类结构的设计来梳理Faiss中的各种概念以及它们之间的关系. 本文分享自华为云社区<Faiss源码剖析(一):类结构分析>,原文作者:HW0 ...
- NNLM原理及Pytorch实现
NNLM NNLM:Neural Network Language Model,神经网络语言模型.源自Bengio等人于2001年发表在NIPS上的<A Neural Probabilistic ...
- dot 语法总结
在使用pprof分析go的项目时,经常会查看各项指标的有向图 原理是使用Graphviz(Graph Visualization Software)解析生成的dot脚本得到最终展示给我们的图信息. d ...
- drozer源码学习二:info+scanner
Information: datetime: 输出android中当前日期:time. setToNow() deviceinfo: 输出设备信息 deviceinfo做了三件事: 1. ...
- 解决在Vim中鼠标右键不能粘贴问题
最近维护一台服务器,使用putty登录后,用vim时,鼠标右键不能 粘贴而是进入了visual模式.网上查找一番找到了解决方法: 方 法一:在普通模式下键入" :set mouse-=a&q ...
- thinkphp5.1 第三方类库引入
说明:在thinkPHP 5.1.X新版取消了Loader::import方法以及import和vendor助手函数(我的PHPExcel包在vendor文件夹中) 1.上图 2.控制器中:
- 还不懂 redis 持久化?看看这个
Redis 是一个内存数据库,为了保证数据不丢失,必须把数据保存到磁盘,这就叫做持久化. Redis 有两种持久化方法: RDB 方式以及 AOF 方式 RDB 持久化 前言 RDB持久化把内存中的数 ...
- 那些好用的 VS Code 插件,究竟是如何提高编码效率的?
在上一篇文章中我们已经对 vscode 插件有了一个初步的认识与了解了,接下去我们就要"揭秘"一下市面上那些好用的 vscode 插件究竟是如何帮我们提高工作效率的. 本文首发于「 ...