论文阅读:MDNet: Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
前言
- Input: 网络的输入是107x107的Bounding box,设置为这个尺寸是为了在卷积层conv3能够得到3x3的feature map。
- Convolutional layers: 网络的卷积层conv1-conv3来自于VGG-M [1]网络,只是输入的大小做了改变。
- Fully connected layers: 接下来的两个全连接层fc4,fc5各有512个输出单元,并设计有ReLUs和Dropouts。fc6是一个二分类层(Domain-specific layers),一共有K个,对应K个Branches(即K个不同的视频),每次训练的时候只有对应该视频的fc6被使用,前面的层都是共享的。
- 用了CNN特征,并且是专门为了tracking设计的网络,用tracking的数据集做了训练
- 有做在线的微调fine-tune,这一点虽然使得速度慢,但是对结果很重要
- Candidates的采样同时也考虑到了尺度,使得对尺度变化的视频也相对鲁棒
- Hard negative mining和bounding box regression这两个策略的使用,使得结果更加精确
论文阅读:MDNet: Learning Multi-Domain Convolutional Neural Networks for Visual Tracking的更多相关文章
- 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...
- [论文阅读] ImageNet Classification with Deep Convolutional Neural Networks(传说中的AlexNet)
这篇文章使用的AlexNet网络,在2012年的ImageNet(ILSVRC-2012)竞赛中获得第一名,top-5的测试误差为15.3%,相比于第二名26.2%的误差降低了不少. 本文的创新点: ...
- 【论文笔记】Pyramidal Convolution: Rethinking Convolutional Neural Networks for Visual Recognition
地址:https://arxiv.org/pdf/2006.11538.pdf github:https://github.com/iduta/pyconv 目前的卷积神经网络普遍使用3×3的卷积神经 ...
- 论文笔记之:Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking
Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking arXiv Paper ...
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
- 卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition
Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalizat ...
- Convolutional Neural Networks for Visual Recognition
http://cs231n.github.io/ 里面有很多相当好的文章 http://cs231n.github.io/convolutional-networks/ Table of Cont ...
- Convolutional Neural Networks for Visual Recognition 1
Introduction 这是斯坦福计算机视觉大牛李菲菲最新开设的一门关于deep learning在计算机视觉领域的相关应用的课程.这个课程重点介绍了deep learning里的一种比较流行的模型 ...
- Convolutional Neural Networks for Visual Recognition 8
Convolutional Neural Networks (CNNs / ConvNets) 前面做了如此漫长的铺垫,现在终于来到了课程的重点.Convolutional Neural Networ ...
随机推荐
- 1016 Phone Bills
A long-distance telephone company charges its customers by the following rules: Making a long-distan ...
- 使用var和不使用var的区别(全局变量/局部变量)
https://blog.csdn.net/czh500/article/details/80429133
- 【Nginx(一)】Centos下 Nginx环境搭建
Nginx环境搭建 系统环境: 腾讯云 Linux Centos7 1.下载nginx压缩包 ,上传到腾讯云服务器 http://nginx.org/en/download.html 或者使用dock ...
- hdu3793 判断对称(水题)
题意: 给你一个串,问你这个串是不是关于某个字母对称的,这个串是一个首位相接的圆. 思路: 水题,直接枚举每一个为对称点试一下就行了,不解释了. #include<std ...
- 病毒木马查杀实战第023篇:MBR病毒之引导区的解析
前言 引导型病毒指寄生在磁盘引导区或主引导区的计算机病毒.这种病毒利用系统引导时,不对主引导区的内容正确与否进行判别的缺点,在引导系统的过程中入侵系统,驻留内存,监视系统运行,伺机传染和破坏.按照引导 ...
- Github镜像网站
https://hub.fastgit.org
- 前端用网址生成二维码(jquery)
1.加载jquery.qrcode.min.js 2.html部分: 3.js部分:url为生成二维码的网址 附: jquery.qrcode.min.js下载 链接:https://pan.baid ...
- Postman报文进行解密之RSA私钥解密
接口返回的数据也是加密的,需要对数据解密才能看到返回的数据是否正确,就需要用RSA解密. 返回数据的解析可以在postman的Tests进行后置处理,获取加密后的返回数据: var data = JS ...
- xxl-job源码阅读一(客户端)
1.源码入口 使用xxl-job的时候,需要引入一个jar,然后还需要往Spring容器注入XxlJobSpringExecutor <dependency> <groupId> ...
- Git 系列教程(12)- 分支的新建与合并
实际工作场景 可能会遇到的工作流 开发某个网站 为实现某个新的用户需求,创建一个分支 在这个分支上开展新工作 正在此时,你突然接到一个电话说有个很严重的问题需要紧急修补,你将按照如下方式来处理: 切换 ...