TensorRT-安装-使用

一.安装

这里 是英伟达提供的安装指导,如果有仔细认真看官方指导,基本上按照官方的指导肯定能安装成功。

问题是肯定有很多人不愿意认真看英文指导,比如说我就是,我看那个指导都是直接找到命令行所在,直接敲命令,然后就出了很多问题,然后搜索好长时间,最后才发现,原来官方install guide里是有说明的。

这里使用的是 deb 包安装的方式,以下是安装过程,我是cuda 8.0 ,cuda9.0也是类似的。

进行下面三步时最好先将后面记录的遇到的问题仔细看看,然后回过头来按照 一二三 步来安装。

第一步:

$ sudo dpkg -i nv-tensorrt-repo-ubuntu1604-ga-cuda8.0-trt3.0-20171128_1-1_amd64.deb

$ sudo apt-get update

$ sudo apt-get install tensorrt

其中的deb包要换成与自己 cuda和系统 对应的版本。

第二步:

使用python2则安装如下依赖

$ sudo apt-get install python-libnvinfer-doc

这个是为了安装一些依赖的:比如 python-libnvinfer python-libnvinfer-dev swig3.0

如果是python3则安装如下依赖

$ sudo apt-get install python3-libnvinfer-doc

第三步:

$ sudo apt-get install uff-converter-tf

这个是安装通用文件格式转换器,主要用在 TensorRT 与TensorFlow 交互使用的时候。

不过我安装的时候还是出问题了:

  • 安装tensorRT之前要将cuda的两个deb包添加上,因为TensorRT依赖好多cuda的一些东西比如 cuda-cublas-8-0 ,我之前cuda是用runfile安装的,所以TensorRT安装时有些依赖库找不到导致出错,如下图:

​上面提示缺少依赖包,但是实际上 libnvinfer4 的包是tensorRT安装了之后才有的,那现在反而成了依赖包了,不管他,缺什么安装什么,但是还是出错,如下:

还是缺少依赖包,这次是缺 cuda-cublas-8-0 ,现在知道了,缺的是cuda的相关组件。

后来把 cuda 的两个deb包安装之后就没问题了,cuda 8.0 的deb包 在这里 ,如下图,下载红框里的两个deb包。

如果用的是 runfile 的方式安装的cuda的话,很容易出错,因为网上大部分cuda安装教程都是用runfile的方式安装的。所以如果cuda就是用deb包安装的话,就没有这个问题,如果使用runfile安装的话,安装tensorRT之前要把这两个deb包安装上,安装方式如下:

$ sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-cublas-performance-update_8.0.61-1_amd64.deb

$ sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb

以上是自己摸索出来的,折腾了一番之后才发现原来官方的 install guide已经说明了,如下:

The debian installation automatically installs any dependencies, but:

  • requires sudo root privileges to install
  • provides no flexibility as to which location TensorRT is installed into
  • requires that the CUDA Toolkit has also been installed with a debian package.

注意最后一条,意思是如果用deb包安装TensorRT,那么前提是 你的CUDA也是用deb包安装的。

怪自己没有认真看,要是多花个5分钟仔细看一下,就不用折腾这么久了,由此深有感触,文档还是官方英文原版的最好,而且要认真看。

不过不知道用 runfile cuda+Tar File Installation tensorRT的组合安装方式是怎么样的,没试过。

  • tensorRT 3 支持CUDA 8 和 CUDA 9,但是只支持 cuDNN 7,我第一次安装的时候cuDNN是5.1的,结果总是出错,错误是啥忘记了,反正换成cuDNN 7就好了,这个官方指导也有说明,不过比较隐蔽,他是放在 4.2 Tar File Installation 一节说明的:
    1. Install the following dependencies, if not already present:

      ‣ Install the CUDA
      Toolkit v8.0, 9.0 or 9.2

      ‣ cuDNN 7.1.3

      ‣ Python 2 or Python 3

我试过只要大版本是 cudnn7就可以。这个也容易忽略。

安装好后,使用 $ dpkg -l | grep TensorRT 命令检测是否成功,输出如下所示即为成功

安装后会在 /usr/src 目录下生成一个 tensorrt 文件夹,里面包含 bin , data , python , samples 四个文件夹, samples 文件夹中是官方例程的源码; data , python 文件中存放官方例程用到的资源文件,比如caffemodel文件,TensorFlow模型文件,一些图片等;bin 文件夹用于存放编译后的二进制文件。

可以把 tensorrt 文件夹拷贝到用户目录下,方便自己修改测试例程中的代码。

进入 samples 文件夹直接 make,会在 bin 目录中生成可执行文件,可以一一进行测试学习。

另外tensorRT是不开源的, 它的头文件位于 /usr/include/x86_64-linux-gnu 目录下,共有七个,分别为:

1

2

3

4

5

6

7

/usr/include/x86_64-linux-gnu/NvCaffeParser.h

/usr/include/x86_64-linux-gnu/NvInfer.h

/usr/include/x86_64-linux-gnu/NvInferPlugin.h

/usr/include/x86_64-linux-gnu/NvOnnxConfig.h

/usr/include/x86_64-linux-gnu/NvOnnxParser.h

/usr/include/x86_64-linux-gnu/NvUffParser.h

/usr/include/x86_64-linux-gnu/NvUtils.h

TensorRT4.0相比于3.0新增了对ONNX的支持。

tensorRT的库文件位于
/usr/lib/x86_64-linux-gnu 目录下,如下(筛选出来的,掺杂了一些其他nvidia库):

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

/usr/lib/x86_64-linux-gnu/libnvinfer.so

/usr/lib/x86_64-linux-gnu/libnvToolsExt.so

/usr/lib/x86_64-linux-gnu/libnvinfer_plugin.a

/usr/lib/x86_64-linux-gnu/libnvinfer_plugin.so.4

/usr/lib/x86_64-linux-gnu/libnvcaffe_parser.so

/usr/lib/x86_64-linux-gnu/libnvparsers.so.4.1.2

/usr/lib/x86_64-linux-gnu/stubs/libnvrtc.so

/usr/lib/x86_64-linux-gnu/libnvcaffe_parser.a

/usr/lib/x86_64-linux-gnu/libnvidia-opencl.so.1

/usr/lib/x86_64-linux-gnu/libnvvm.so

/usr/lib/x86_64-linux-gnu/libnvinfer.a

/usr/lib/x86_64-linux-gnu/libnvvm.so.3

/usr/lib/x86_64-linux-gnu/libnvToolsExt.so.1

/usr/lib/x86_64-linux-gnu/libnvrtc.so.7.5

/usr/lib/x86_64-linux-gnu/libnvparsers.a

/usr/lib/x86_64-linux-gnu/libnvblas.so.7.5

/usr/lib/x86_64-linux-gnu/libnvToolsExt.so.1.0.0

/usr/lib/x86_64-linux-gnu/libnvcaffe_parser.so.4.1.2

/usr/lib/x86_64-linux-gnu/libnvinfer_plugin.so

/usr/lib/x86_64-linux-gnu/libnvrtc-builtins.so

/usr/lib/x86_64-linux-gnu/libnvparsers.so

/usr/lib/x86_64-linux-gnu/libnvrtc-builtins.so.7.5.18

/usr/lib/x86_64-linux-gnu/libnvblas.so.7.5.18

/usr/lib/x86_64-linux-gnu/libnvvm.so.3.0.0

/usr/lib/x86_64-linux-gnu/libnvrtc.so

/usr/lib/x86_64-linux-gnu/libnvrtc-builtins.so.7.5

/usr/lib/x86_64-linux-gnu/libnvinfer.so.4.1.2

/usr/lib/x86_64-linux-gnu/libnvidia-opencl.so.390.30

/usr/lib/x86_64-linux-gnu/libnvrtc.so.7.5.17

/usr/lib/x86_64-linux-gnu/libnvblas.so

/usr/lib/x86_64-linux-gnu/libnvinfer.so.4

/usr/lib/x86_64-linux-gnu/libnvparsers.so.4

/usr/lib/x86_64-linux-gnu/libnvinfer_plugin.so.4.1.2

/usr/lib/x86_64-linux-gnu/libnvcaffe_parser.so.4

编译

将 /usr/src/tensorrt 文件夹拷贝到用户目录下,假设路径为
<tensorrt_srcpath> 。

第一个问题:

在 <tensorrt_srcpath>/tensorrt/samples 文件夹中有个
Makefile.config 文件,里面第4行:

CUDA_VER?=cuda-$(shell dpkg-query -f
'$${version}\n' -W 'cuda-cudart-[0-9]*' | cut -d . -f 1,2 | sort -n | tail -n 1)

这一句是为了获取cuda版本的,我的机器是 CUDA 8.0 。我记得我第一次安装时,后面dpkg命令 输出的不是8.0,是一个很奇怪的数字,导致我不能编译 tensorRT 例程。 后来我直接在这句后面添加了一句:
CUDA_VER=cuda-8.0 ,简单粗暴解决问题了。

这个问题好像是还是因为我之前安装 cuda 时是用 runfile 的方式安装的,用这种方式安装的cuda不会安装cuda的deb包,所以上面语句输出的是不对的,导致找不到cuda库目录,编译不能进行。

可以使用命令sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb ,安装deb包,就可以了。或者像我那样添加 CUDA_VER=cuda-8.0 也可以。

如果安装cuda就是使用deb包安装的话,就不会出现这个问题。

第二个问题:

如果机器上安装了多个cuda版本,像我这个机器上 cuda8.0,9.0,9.1都装上了,上面语句得到的就只是 CUDA_VER=9.1,如果安装的是其他版本cuda的TensorRT的话肯定是不对的。

可以直接在第4行下面添加:

CUDA_INSTALL_DIR=/usr/local/cuda-9.0

二.TensorRT 使用流程

这是个很简单的流程,先简单了解一下,以后会深入研究更高级的用法。

在使用tensorRT的过程中需要提供以下文件(以caffe为例):

  1. A network architecture file (deploy.prototxt), 模型文件
  2. Trained weights (net.caffemodel), 权值文件
  3. A label file to provide a name for each output class. 标签文件

前两个是为了解析模型时使用,最后一个是推理输出时将数字映射为有意义的文字标签。

tensorRT的使用包括两个阶段, build and deployment:

  • build:Import and
    optimize trained models to generate inference engines

build阶段主要完成模型转换(从caffe或TensorFlow到TensorRT),在模型转换时会完成前述优化过程中的层间融合,精度校准。这一步的输出是一个针对特定GPU平台和网络模型的优化过的TensorRT模型,这个TensorRT模型可以序列化存储到磁盘或内存中。存储到磁盘中的文件称之为 plan
file。

下面代码是一个简单的build过程:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

//创建一个builder

IBuilder* builder = createInferBuilder(gLogger);

// parse the caffe model to populate the network, then
set the outputs

// 创建一个network对象,不过这时network对象只是一个空架子

INetworkDefinition* network = builder->createNetwork();

//tensorRT提供一个高级别的API:CaffeParser,用于解析Caffe模型

//parser.parse函数接受的参数就是上面提到的文件,和network对象

//这一步之后network对象里面的参数才被填充,才具有实际的意义

CaffeParser parser;

auto
blob_name_to_tensor = parser.parse(“deploy.prototxt”,

trained_file.c_str(),

*network,

DataType::kFLOAT);

// 标记输出 tensors

// specify which tensors are outputs

network->markOutput(*blob_name_to_tensor->find("prob"));

// Build the engine

// 设置batchsize和工作空间,然后创建inference engine

builder->setMaxBatchSize(1);

builder->setMaxWorkspaceSize(1 << 30);

//调用buildCudaEngine时才会进行前述的层间融合或精度校准优化方式

ICudaEngine* engine =
builder->buildCudaEngine(*network);

上面的过程使用了一个高级别的API:CaffeParser,直接读取
caffe的模型文件,就可以解析,也就是填充network对象。解析的过程也可以直接使用一些低级别的C++API,比如:

1

2

ITensor* in = network->addInput(“input”,
DataType::kFloat, Dims3{…});

IPoolingLayer* pool = network->addPooling(in,
PoolingType::kMAX, …);

解析caffe模型之后,必须要指定输出tensor,设置batchsize,和设置工作空间。设置batchsize就跟使用caffe测试是一样的,设置工作空间是进行前述层间融合和张量融合的必要措施。层间融合和张量融合的过程是在调用builder->buildCudaEngine时才进行的。

  • deploy:Generate
    runtime inference engine for inference

deploy阶段主要完成推理过程,Kernel Auto-Tuning 和 Dynamic Tensor Memory 应该是在这里完成的。将上面一个步骤中的plan文件首先反序列化,并创建一个 runtime engine,然后就可以输入数据(比如测试集或数据集之外的图片),然后输出分类向量结果或检测结果。

tensorRT的好处就是不需要安装其他深度学习框架,就可以实现部署和推理。

以下是一个简单的deploy代码:这里面没有包含反序列化过程和测试时的batch流获取

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

// The execution context is responsible for launching
the

// compute kernels 创建上下文环境 context,用于启动kernel

IExecutionContext *context = engine->createExecutionContext();

// In order to bind the buffers, we need to know the
names of the

// input and output tensors. //获取输入,输出tensor索引

int inputIndex =
engine->getBindingIndex(INPUT_LAYER_NAME),

int outputIndex =
engine->getBindingIndex(OUTPUT_LAYER_NAME);

//申请GPU显存

// Allocate GPU memory for Input / Output data

void* buffers = malloc(engine->getNbBindings()
* sizeof(void*));

cudaMalloc(&buffers[inputIndex], batchSize *
size_of_single_input);

cudaMalloc(&buffers[outputIndex], batchSize *
size_of_single_output);

//使用cuda 流来管理并行计算

// Use CUDA streams to manage the concurrency of
copying and executing

cudaStream_t stream;

cudaStreamCreate(&stream);

//从内存到显存,input是读入内存中的数据;buffers[inputIndex]是显存上的存储区域,用于存放输入数据

// Copy Input Data to the GPU

cudaMemcpyAsync(buffers[inputIndex], input,

batchSize * size_of_single_input,

cudaMemcpyHostToDevice, stream);

//启动cuda核计算

// Launch an instance of the GIE compute kernel

context.enqueue(batchSize, buffers, stream, nullptr);

//从显存到内存,buffers[outputIndex]是显存中的存储区,存放模型输出;output是内存中的数据

// Copy Output Data to the Host

cudaMemcpyAsync(output, buffers[outputIndex],

batchSize * size_of_single_output,

cudaMemcpyDeviceToHost, stream));

//如果使用了多个cuda流,需要同步

// It is possible to have multiple instances of the
code above

// in flight on the GPU in different streams.

// The host can then sync on a given stream and use the
results

cudaStreamSynchronize(stream);

可见使用了挺多的CUDA 编程,所以要想用好tensorRT还是要熟练 GPU编程。

4
Performance Results

来看一看使用以上优化方式之后,能获得怎样的加速效果:

可见使用tensorRT与使用CPU相比,获得了40倍的加速,与使用TensorFlow在GPU上推理相比,获得了18倍的加速。效果还是很明显的。

以下两图,是使用了INT8低精度模式进行推理的结果展示:包括精度和速度。

可见精度损失很少,速度提高很多。

上面还是17年 TensorRT2.1的性能,这里 是一个最新的TensorRT4.0.1的性能表现,有很详细的数据展示来说明TensorRT在inference时的强劲性能。

后面的博客中会进一步学习 tensorRT,包括官方例程和做一些实用的优化。

TensorRT-安装-使用的更多相关文章

  1. TensorRt安装

    1.下载 https://developer.nvidia.com/nvidia-tensorrt-5x-download 选择5 GA版本,注意选择与自己CUDA匹配的版本 2.安装 参考:http ...

  2. 矩池云安装/修改 cuda、cudnn、nvcc、tensorRT 教程

    在整个机器学习的过程中,配置环境一直是一个比较复杂的事情,今天介绍几种根据英伟达官方文档来配置环境的方法. 安装方案 https://gitlab.com/nvidia/container-image ...

  3. TensorRT学习总结

    TensorRT是什么 建议先看看这篇https://zhuanlan.zhihu.com/p/35657027 深度学习 训练 部署 平常自学深度学习的时候关注的更多是训练的部分,即得到一个模型.而 ...

  4. TensorRT 介绍

    引用:https://arleyzhang.github.io/articles/7f4b25ce/ 1 简介 TensorRT是一个高性能的深度学习推理(Inference)优化器,可以为深度学习应 ...

  5. TensorRT 开始

    TensorRT 是 NVIDIA 自家的高性能推理库,其 Getting Started 列出了各资料入口,如下: 本文基于当前的 TensorRT 8.2 版本,将一步步介绍从安装,直到加速推理自 ...

  6. Nanodet模型部署(ncnn,openvino)/YOLOX部署(TensorRT)

    Nanodet模型部署(ncnn,openvino) nanodet官方代码库nanodet 1. nanodet模型部署在openvino上 step1: 参考链接 nanodet官方demo op ...

  7. 10分钟内基于gpu的目标检测

    10分钟内基于gpu的目标检测 Object Detection on GPUs in 10 Minutes 目标检测仍然是自动驾驶和智能视频分析等应用的主要驱动力.目标检测应用程序需要使用大量数据集 ...

  8. TensorRT下安装pycuda

    为了模型小型化,效率更高,使用TensorRT进行优化.前提是你必须要安装pycuda,可是费了我一番功夫.做一个笔记如下: 1.参考网址: https://wiki.tiker.net/PyCuda ...

  9. (原)Ubuntu安装TensorRT

    转载请注明出处: https://www.cnblogs.com/darkknightzh/p/11129472.html 参考网址: https://docs.nvidia.com/deeplear ...

随机推荐

  1. POJ 2396 构造矩阵(上下流)

    题意:       要求构造一个矩阵,给你行和,列和,还有一些点的上下范围,输出一个满足题意的矩阵. 思路:       这个题目很经典,这是自己看上下流后接触的第一道题,感觉很基础的一道题目,现在我 ...

  2. Andrew Ng机器学习算法入门((五):矩阵和向量

    矩阵定义 数学上,一个m×n的矩阵是一个由m行n列元素排列成的矩形阵列 使用Aij来获取矩阵中第i行j列的数据 向量的定义 向量就是n行1列的特殊矩阵 由于向量仅仅只有1行,那么通过一个变量i来指定获 ...

  3. 【翻译】WPF中的数据绑定表达式

    有很多文章讨论绑定的概念,并讲解如何使用StaticResources和DynamicResources绑定属性.这些概念使用WPF提供的数据绑定表达式.在本文中,让我们研究WPF提供的不同类型的数据 ...

  4. Day001 基本的Dos命令

    基本的Dos命令 打开cmd的方式 开始+系统+命令提示符(有时候需要右键以管理员身份运行) Win+R键,输入cmd打开控制台 按住shift键的同时鼠标右键,点击在此处打开powershell窗口 ...

  5. Docker为PHP安装gd扩展

    安装扩展库的通常命令 docker-php-ext-install 扩展库名 安装gd库需要特殊照顾,步骤如下 //进入PHP容器 //更新软件源 apt update //安装各种库 apt ins ...

  6. Kafka源码分析系列-目录(收藏不迷路)

    持续更新中,敬请关注! 目录 <Kafka源码分析>系列文章计划按"数据传递"的顺序写作,即:先分析生产者,其次分析Server端的数据处理,然后分析消费者,最后再补充 ...

  7. Mybatis最终搭建

    框架搭建的流程1. 导入jar2. 准备属性文件和配置文件3. 编写数据库的表和类4. 为类编写一个XxxMapper接口5. 编写接口对应的映射文件XxxMapper.xml6. 根据接口的方法, ...

  8. Spring核心结构及核心思想

    Spring核心结构 基本概念 Spring是⼀个分层⾮常清晰并且依赖关系.职责定位⾮常明确的轻量级框架,主要包括⼏个⼤模块:数据处理模块.Web模块.AOP(Aspect Oriented Prog ...

  9. 测试的V模型和W模型

    V模型 :后测试 优点: 1.每一阶段都清晰明了,便于把控开发的每一个过程. 2.既包含了单元测试又包含了系统测试 缺点: 1.测试介入的比较晚,所以开发前期的缺陷无从修改. 2.开发和测试串行. W ...

  10. MySQL权限管理实战

    前言: 不清楚各位同学对数据库用户权限管理是否了解,作为一名 DBA ,用户权限管理是绕不开的一项工作内容.特别是生产库,数据库用户权限更应该规范管理.本篇文章将会介绍下 MySQL 用户权限管理相关 ...