计图MPI分布式多卡
计图MPI分布式多卡
计图分布式基于MPI(Message Passing Interface),主要阐述使用计图MPI,进行多卡和分布式训练。目前计图分布式处于测试阶段。
计图MPI安装
计图依赖OpenMPI,用户可以使用如下命令安装OpenMPI:
sudo apt install openmpi-bin openmpi-common libopenmpi-dev
计图会自动检测环境变量中是否包含mpicc,如果计图成功的检测到了mpicc,输出如下信息:
[i 0502 14:09:55.758481 24 __init__.py:203] Found mpicc(1.10.2) at /usr/bin/mpicc
如果计图没有在环境变量中找到mpi,用户也可以手动指定mpicc的路径告诉计图,添加环境变量即可:export mpicc_path=/you/mpicc/path
OpenMPI安装完成以后,用户无需修改代码,需要做的仅仅是修改启动命令行,计图就会用数据并行的方式,自动完成并行操作。
# 单卡训练代码
python3.7 -m jittor.test.test_resnet
# 分布式多卡训练代码
mpirun -np 4 python3.7 -m jittor.test.test_resnet
# 指定特定显卡的多卡训练代码
CUDA_VISIBLE_DEVICES="2,3" mpirun -np 2 python3.7 -m jittor.test.test_resnet
便捷性的背后,计图的分布式算子的支撑,计图支持的mpi算子后端会使用nccl进行进一步的加速。计图所有分布式算法的开发,均在Python前端完成,让分布式算法的灵活度增强,开发分布式算法的难度也大大降低。
基于这些mpi算子接口,研发团队已经集成了如下三种分布式相关的算法:
- 分布式数据并行加载
- 分布式优化器
- 分布式同步批归一化层
用户在使用MPI进行分布式训练时,计图内部的Dataset类会自动并行分发数据,需要注意的是Dataset类中设置的Batch size是所有节点的batch size之和,也就是总batch size,不是单个节点接收到的batch size。
MPI接口
目前MPI开放接口如下:
- jt.mpi: 计图的MPI模块,当计图不在MPI环境下时,jt.mpi == None, 用户可以用这个判断是否在mpi环境下。
- jt.Module.mpi_param_broadcast(root=0): 将模块的参数从root节点广播给其他节点。
- jt.mpi.mpi_reduce(x, op='add', root=0): 将所有节点的变量x使用算子op,reduce到root节点。如果op是’add’或者’sum’,该接口会把所有变量求和,如果op是’mean’,该接口会取均值。

- jt.mpi.mpi_broadcast(x, root=0): 将变量x从root节点广播到所有节点。

- jt.mpi.mpi_all_reduce(x, op='add'): 将所有节点的变量x使用一起reduce,并且吧reduce的结果再次广播到所有节点。如果op是’add’或者’sum’,该接口会把所有变量求和,如果op是’mean’,该接口会取均值。

实例:MPI实现分布式同步批归一化层
下面的代码是使用计图实现分布式同步批,归一化层的实例代码,在原来批归一化层的基础上,只需增加三行代码,就可以实现分布式的batch norm,添加的代码如下:
# 将均值和方差,通过all reduce同步到所有节点
if self.sync and jt.mpi:
xmean = xmean.mpi_all_reduce("mean")
x2mean = x2mean.mpi_all_reduce("mean")
注:计图内部已经实现了同步的批归一化层,用户不需要自己实现
分布式同步批归一化层的完整代码:
class BatchNorm(Module):
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=None, is_train=True, sync=True):
assert affine == None
self.sync = sync
self.num_features = num_features
self.is_train = is_train
self.eps = eps
self.momentum = momentum
self.weight = init.constant((num_features,), "float32", 1.0)
self.bias = init.constant((num_features,), "float32", 0.0)
self.running_mean = init.constant((num_features,), "float32", 0.0).stop_grad()
self.running_var = init.constant((num_features,), "float32", 1.0).stop_grad()
def execute(self, x):
if self.is_train:
xmean = jt.mean(x, dims=[0,2,3], keepdims=1)
x2mean = jt.mean(x*x, dims=[0,2,3], keepdims=1)
# 将均值和方差,通过all reduce同步到所有节点
if self.sync and jt.mpi:
xmean = xmean.mpi_all_reduce("mean")
x2mean = x2mean.mpi_all_reduce("mean")
xvar = x2mean-xmean*xmean
norm_x = (x-xmean)/jt.sqrt(xvar+self.eps)
self.running_mean += (xmean.sum([0,2,3])-self.running_mean)*self.momentum
self.running_var += (xvar.sum([0,2,3])-self.running_var)*self.momentum
else:
running_mean = self.running_mean.broadcast(x, [0,2,3])
running_var = self.running_var.broadcast(x, [0,2,3])
norm_x = (x-running_mean)/jt.sqrt(running_var+self.eps)
w = self.weight.broadcast(x, [0,2,3])
b = self.bias.broadcast(x, [0,2,3])
return norm_x * w + b
计图MPI分布式多卡的更多相关文章
- 计图(Jittor) 1.1版本:新增骨干网络、JIT功能升级、支持多卡训练
计图(Jittor) 1.1版本:新增骨干网络.JIT功能升级.支持多卡训练 深度学习框架-计图(Jittor),Jittor的新版本V1.1上线了.主要变化包括: 增加了大量骨干网络的支持,增强了辅 ...
- openlayers-统计图显示(中国区域高亮)
openlayers版本: v3.19.1-dist 统计图效果: 案例下载地址:https://gitee.com/kawhileonardfans/openlayers-examp ...
- 用动图讲解分布式 Raft
一.Raft 概述 Raft 算法是分布式系统开发首选的共识算法.比如现在流行 Etcd.Consul. 如果掌握了这个算法,就可以较容易地处理绝大部分场景的容错和一致性需求.比如分布式配置系统.分布 ...
- 8.3 MPI
MPI 模型 如图MPI的各个运算节点是分布式的.每一个节点可以视为是一个“Thread”,但这里的不同之处在于这些节点没有所谓的共享内存,或者说Global Memory.所以,在后面也会看到,一般 ...
- Horovod 分布式深度学习框架相关
最近需要 Horovod 相关的知识,在这里记录一下,进行备忘: 分布式训练,分为数据并行和模型并行两种: 模型并行:分布式系统中的不同GPU负责网络模型的不同部分.神经网络模型的不同网络层被分配到不 ...
- Samsung S4卡屏卡在开机画面的不拆机恢复照片一例
大家好!欢迎再次来到我Dr.wonder的世界, 今天我给你们带来Samsung S4 I9508 卡屏开在开机画面的恢复!非常de经典. 首先看图 他开机一直卡在这里, 然后 ,我们使用专业仪器,在 ...
- 云时代的分布式数据库:阿里分布式数据库服务DRDS
发表于2015-07-15 21:47| 10943次阅读| 来源<程序员>杂志| 27 条评论| 作者王晶昱 <程序员>杂志数据库DRDS分布式沈询 摘要:伴随着系统性能.成 ...
- Spark入门实战系列--9.Spark图计算GraphX介绍及实例
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .GraphX介绍 1.1 GraphX应用背景 Spark GraphX是一个分布式图处理 ...
- 学习笔记:The Log(我所读过的最好的一篇分布式技术文章)
前言 这是一篇学习笔记. 学习的材料来自Jay Kreps的一篇讲Log的博文. 原文很长,但是我坚持看完了,收获颇多,也深深为Jay哥的技术能力.架构能力和对于分布式系统的理解之深刻所折服.同时也因 ...
随机推荐
- 使用netty实现socks5协议
一.socks5协议简介 SOCKS是一种网络传输协议,主要用于客户端与外网服务器之间通讯的中间传递. SOCKS是"SOCKetS"的缩写[注 1]. 当防火墙后的客户端要访问外 ...
- 总结:composer的install和require和update指令。到底什么时候用什么指令
https://packagist.org 相当于是应用商店
- wire shark 抓包过滤器
http.request.method==GET vuin= 抓取QQ信息 数据链路层: 筛选mac地址为04:f9:38:ad:13:26的数据包----eth.src == 04:f9:38:ad ...
- KMP中next数组的理解
next数组是KMP的核心,但对于next数组我们总是有时候感觉明白了,但有时候又感觉没明白,现在我就说下我自己对KMP中next数组的理解,首先next[i]上的数字的意义,next[i]表示的是当 ...
- POJ3160强连通+spfa最长路(不错)
题意: 给你一个有向图,每个点上有一个权值,可正可负,然后给你一些链接关系,让你找到一个起点,从起点开始走,走过的边可以在走,但是拿过权值的点就不能再拿了,问最多能拿到多少权值? 思路: ...
- windows-CODE注入(远程线程注入)
远程线程注入(先简单说,下面会详细说)今天整理下代码注入(远程线程注入),所谓代码注入,可以简单的理解为是在指定内进程里申请一块内存,然后把我们自己的执行代码和一些变量拷贝进去(通常是以启线程的方式) ...
- Node-RESTful
//获取用户列表------------------------------------------------- var express = require('express'); var app ...
- (CV学习笔记)Attention
Attention(注意力机制) Attention for Image Attention for Machine Translation Self-Attention 没有image-Attent ...
- .NET Core-全局性能诊断工具
前言: 现在.NET Core 上线后,不可避免的会出现各种问题,如内存泄漏.CPU占用高.接口处理耗时较长等问题.这个时候就需要快速准确的定位问题,并解决. 这时候就可以使用.NET Core 为开 ...
- Sublime text3 的破解
下载sublimeText3的安装包并安装(已经安装的可以忽略) 在hosts文件中添加:127.0.0.1 license.sublimehq.com(hosts文件地址:C:\Windows\Sy ...