计图MPI分布式多卡
计图MPI分布式多卡
计图分布式基于MPI(Message Passing Interface),主要阐述使用计图MPI,进行多卡和分布式训练。目前计图分布式处于测试阶段。
计图MPI安装
计图依赖OpenMPI,用户可以使用如下命令安装OpenMPI:
sudo apt install openmpi-bin openmpi-common libopenmpi-dev
计图会自动检测环境变量中是否包含mpicc,如果计图成功的检测到了mpicc,输出如下信息:
[i 0502 14:09:55.758481 24 __init__.py:203] Found mpicc(1.10.2) at /usr/bin/mpicc
如果计图没有在环境变量中找到mpi,用户也可以手动指定mpicc的路径告诉计图,添加环境变量即可:export mpicc_path=/you/mpicc/path
OpenMPI安装完成以后,用户无需修改代码,需要做的仅仅是修改启动命令行,计图就会用数据并行的方式,自动完成并行操作。
# 单卡训练代码
python3.7 -m jittor.test.test_resnet
# 分布式多卡训练代码
mpirun -np 4 python3.7 -m jittor.test.test_resnet
# 指定特定显卡的多卡训练代码
CUDA_VISIBLE_DEVICES="2,3" mpirun -np 2 python3.7 -m jittor.test.test_resnet
便捷性的背后,计图的分布式算子的支撑,计图支持的mpi算子后端会使用nccl进行进一步的加速。计图所有分布式算法的开发,均在Python前端完成,让分布式算法的灵活度增强,开发分布式算法的难度也大大降低。
基于这些mpi算子接口,研发团队已经集成了如下三种分布式相关的算法:
- 分布式数据并行加载
- 分布式优化器
- 分布式同步批归一化层
用户在使用MPI进行分布式训练时,计图内部的Dataset类会自动并行分发数据,需要注意的是Dataset类中设置的Batch size是所有节点的batch size之和,也就是总batch size,不是单个节点接收到的batch size。
MPI接口
目前MPI开放接口如下:
- jt.mpi: 计图的MPI模块,当计图不在MPI环境下时,jt.mpi == None, 用户可以用这个判断是否在mpi环境下。
- jt.Module.mpi_param_broadcast(root=0): 将模块的参数从root节点广播给其他节点。
- jt.mpi.mpi_reduce(x, op='add', root=0): 将所有节点的变量x使用算子op,reduce到root节点。如果op是’add’或者’sum’,该接口会把所有变量求和,如果op是’mean’,该接口会取均值。
- jt.mpi.mpi_broadcast(x, root=0): 将变量x从root节点广播到所有节点。
- jt.mpi.mpi_all_reduce(x, op='add'): 将所有节点的变量x使用一起reduce,并且吧reduce的结果再次广播到所有节点。如果op是’add’或者’sum’,该接口会把所有变量求和,如果op是’mean’,该接口会取均值。
实例:MPI实现分布式同步批归一化层
下面的代码是使用计图实现分布式同步批,归一化层的实例代码,在原来批归一化层的基础上,只需增加三行代码,就可以实现分布式的batch norm,添加的代码如下:
# 将均值和方差,通过all reduce同步到所有节点
if self.sync and jt.mpi:
xmean = xmean.mpi_all_reduce("mean")
x2mean = x2mean.mpi_all_reduce("mean")
注:计图内部已经实现了同步的批归一化层,用户不需要自己实现
分布式同步批归一化层的完整代码:
class BatchNorm(Module):
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=None, is_train=True, sync=True):
assert affine == None
self.sync = sync
self.num_features = num_features
self.is_train = is_train
self.eps = eps
self.momentum = momentum
self.weight = init.constant((num_features,), "float32", 1.0)
self.bias = init.constant((num_features,), "float32", 0.0)
self.running_mean = init.constant((num_features,), "float32", 0.0).stop_grad()
self.running_var = init.constant((num_features,), "float32", 1.0).stop_grad()
def execute(self, x):
if self.is_train:
xmean = jt.mean(x, dims=[0,2,3], keepdims=1)
x2mean = jt.mean(x*x, dims=[0,2,3], keepdims=1)
# 将均值和方差,通过all reduce同步到所有节点
if self.sync and jt.mpi:
xmean = xmean.mpi_all_reduce("mean")
x2mean = x2mean.mpi_all_reduce("mean")
xvar = x2mean-xmean*xmean
norm_x = (x-xmean)/jt.sqrt(xvar+self.eps)
self.running_mean += (xmean.sum([0,2,3])-self.running_mean)*self.momentum
self.running_var += (xvar.sum([0,2,3])-self.running_var)*self.momentum
else:
running_mean = self.running_mean.broadcast(x, [0,2,3])
running_var = self.running_var.broadcast(x, [0,2,3])
norm_x = (x-running_mean)/jt.sqrt(running_var+self.eps)
w = self.weight.broadcast(x, [0,2,3])
b = self.bias.broadcast(x, [0,2,3])
return norm_x * w + b
计图MPI分布式多卡的更多相关文章
- 计图(Jittor) 1.1版本:新增骨干网络、JIT功能升级、支持多卡训练
计图(Jittor) 1.1版本:新增骨干网络.JIT功能升级.支持多卡训练 深度学习框架-计图(Jittor),Jittor的新版本V1.1上线了.主要变化包括: 增加了大量骨干网络的支持,增强了辅 ...
- openlayers-统计图显示(中国区域高亮)
openlayers版本: v3.19.1-dist 统计图效果: 案例下载地址:https://gitee.com/kawhileonardfans/openlayers-examp ...
- 用动图讲解分布式 Raft
一.Raft 概述 Raft 算法是分布式系统开发首选的共识算法.比如现在流行 Etcd.Consul. 如果掌握了这个算法,就可以较容易地处理绝大部分场景的容错和一致性需求.比如分布式配置系统.分布 ...
- 8.3 MPI
MPI 模型 如图MPI的各个运算节点是分布式的.每一个节点可以视为是一个“Thread”,但这里的不同之处在于这些节点没有所谓的共享内存,或者说Global Memory.所以,在后面也会看到,一般 ...
- Horovod 分布式深度学习框架相关
最近需要 Horovod 相关的知识,在这里记录一下,进行备忘: 分布式训练,分为数据并行和模型并行两种: 模型并行:分布式系统中的不同GPU负责网络模型的不同部分.神经网络模型的不同网络层被分配到不 ...
- Samsung S4卡屏卡在开机画面的不拆机恢复照片一例
大家好!欢迎再次来到我Dr.wonder的世界, 今天我给你们带来Samsung S4 I9508 卡屏开在开机画面的恢复!非常de经典. 首先看图 他开机一直卡在这里, 然后 ,我们使用专业仪器,在 ...
- 云时代的分布式数据库:阿里分布式数据库服务DRDS
发表于2015-07-15 21:47| 10943次阅读| 来源<程序员>杂志| 27 条评论| 作者王晶昱 <程序员>杂志数据库DRDS分布式沈询 摘要:伴随着系统性能.成 ...
- Spark入门实战系列--9.Spark图计算GraphX介绍及实例
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .GraphX介绍 1.1 GraphX应用背景 Spark GraphX是一个分布式图处理 ...
- 学习笔记:The Log(我所读过的最好的一篇分布式技术文章)
前言 这是一篇学习笔记. 学习的材料来自Jay Kreps的一篇讲Log的博文. 原文很长,但是我坚持看完了,收获颇多,也深深为Jay哥的技术能力.架构能力和对于分布式系统的理解之深刻所折服.同时也因 ...
随机推荐
- linux下python调用.so文件
前言 使用python 调用Fanuc的动态链路库.so 文件读取数据 环境要求 环境 需求 ubuntu16.04 32位 python3.5 32位 配置 把so文件添加到默认路径 ln -s / ...
- top:0;bottom:0;left:0;right:0;同时使用的效果
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 【Spring】 Spring如何解决循环依赖的问题?
https://mp.weixin.qq.com/s/FtbzTMxHgzL0G1R2pSlh-A 通常来说,如果问Spring内部如何解决循环依赖,一定是单默认的单例Bean中,属性互相引用的场景. ...
- 【接口设计】用户积分排行榜功能-Redis实现
一.排行榜功能简介 排行榜功能是一个很普遍的需求.使用 Redis 中有序集合(SortedSet)的特性来实现排行榜是又好又快的选择. 一般排行榜都是有实效性的,比如交通数据流中的路口/路段的车流量 ...
- IPC$共享和其他共享(C$、D$)
目录 net use共享命令的用法 IPC$ IPC空连接 ipc$使用的端口 关闭IPC$共享 net use共享命令的用法 net use #查看连接 net share ...
- 路由协议之RIP
目录 RIP协议 RIP的路由汇总和过滤 RIP的认证 RIP的防环机制 华为/思科中的配置 RIP协议 RIP协议是一种内部网关协议(IGP),底层是贝尔曼福特算法,是一种动态路由选择协议,用于自治 ...
- C++ 模板元编程简单小栗子
最近看了看模板的元编程,感觉有点意思. 一些计算可以在编译过程就能够完成,榨干编译器的最后一点资源. stl中用的全是这些玩意. 当然,这增加了编译时长. 我记得貌似有"图灵完备" ...
- transformer模型转torchscript格式
from transformers import BertModel, BertTokenizer, BertConfig import torch enc = BertTokenizer.from_ ...
- Securecrt 在win7下 字体太少问题
用WIN7,觉得securecrt里面可用的字体太少了.很多都没有,比如lucida console,经过一番查找,终于找到解决问题的方法了. 原因就是win7里面的很多字体都被设置为隐藏了,所以se ...
- 并发容器-CopyOnWriteSet
CopyOnWriteSet 该容器与CopyOnWriteArrayList相似,也是读取时不加锁,任意线程可以读.写入时加锁创建一个新的容器,然后写入新元素. 内部用CopyOnWriteArra ...