python3使用pycuda执行简单GPU计算任务
技术背景
GPU的加速技术在深度学习、量子计算领域都已经被广泛的应用。其适用的计算模型是小内存的密集型计算场景,如果计算的模型内存较大,则需要使用到共享内存,这会直接导致巨大的数据交互的运算量,通信开销较大。因为pycuda的出现,也使得我们可以直接在python内直接使用GPU函数,当然也可以直接在python代码中集成一些C++的代码,用于构建GPU计算的函数。有一个专门介绍pycuda使用案例的中文开源代码仓可以简单参考一些实现的示例,但是这里面的示例数量还是比较有限,更多的案例可以直接参考pycuda官方文档。
pycuda环境配置
pycuda的安装环境很大程度上取决约显卡驱动本身是否能够安装成功,除了安装pycuda库本身之外,重点是需要确保如下的指令可以运行成功:
[dechin@dechin-manjaro pycuda]$ nvidia-smi
Sun Mar 21 20:26:43 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 455.45.01 Driver Version: 455.45.01 CUDA Version: 11.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 GeForce MX250 Off | 00000000:3C:00.0 Off | N/A |
| N/A 48C P0 N/A / N/A | 0MiB / 2002MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
上述返回的结果是一个没有GPU任务情况下的展示界面,包含有显卡型号、显卡内存等信息。如果存在执行的任务,则显示结果如下案例所示:
[dechin@dechin-manjaro pycuda]$ nvidia-smi
Sun Mar 21 20:56:04 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 455.45.01 Driver Version: 455.45.01 CUDA Version: 11.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 GeForce MX250 Off | 00000000:3C:00.0 Off | N/A |
| N/A 47C P0 N/A / N/A | 31MiB / 2002MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 18427 C python3 29MiB |
+-----------------------------------------------------------------------------+
我们发现这里多了一个pid为18427的python的进程正在使用GPU进行计算。在运算过程中,如果任务未能够执行成功,有可能在内存中遗留一个进程,这需要我们自己手动去释放。最简单粗暴的方法就是:直接使用kill -9 pid
来杀死残留的进程。我们可以使用pycuda自带的函数接口,也可以自己写C++代码来实现GPU计算的相关功能,当然一般情况下更加推荐使用pycuda自带的函数。以下为一部分已经实现的接口函数,比如gpuarray
的函数:
再比如cumath
的函数:
使用GPU计算向量指数
对于一个向量的指数而言,其实就是将每一个的向量元素取指数。当然,这与前面一篇关于量子门操作的博客中介绍的矩阵指数略有区别,这点要注意区分。
在下面的示例中,我们对比了numpy
中实现的指数运算和pycuda
中实现的指数运算。
# array_exp.py
import pycuda.autoinit
import pycuda.gpuarray as ga
import pycuda.cumath as gm
import numpy as np
import sys
if sys.argv[1] == '-l':
length = int(sys.argv[2]) # 从命令行获取参数值
np.random.seed(1)
array = np.random.randn(length).astype(np.float32)
array_gpu = ga.to_gpu(array)
exp_array = np.exp(array)
print (exp_array)
exp_array_gpu = gm.exp(array_gpu)
gpu_exp_array = exp_array_gpu.get()
print (gpu_exp_array)
这里面我们计算一个随机向量的指数,向量的维度length
是从命令行获取的一个参数,上述代码的执行方式和执行结果如下所示:
[dechin@dechin-manjaro pycuda]$ python3 array_exp.py -l 5
[5.0750957 0.5423974 0.58968204 0.34199178 2.3759744 ]
[5.075096 0.5423974 0.58968204 0.34199178 2.3759747 ]
我们先确保两者计算出来的结果是一致的,这里我们可以观察到,两个计算的结果只保障了7位的有效数字是相等的,这一点在大部分的场景下精度都是有保障的。接下来我们使用timeit
来统计和对比两者的性能:
# array_exp.py
import pycuda.autoinit
import pycuda.gpuarray as ga
import pycuda.cumath as gm
import numpy as np
import sys
import timeit
if sys.argv[1] == '-l':
length = int(sys.argv[2])
np.random.seed(1)
array = np.random.randn(length).astype(np.float32)
array_gpu = ga.to_gpu(array)
def npexp():
exp_array = np.exp(array)
def gmexp():
exp_array_gpu = gm.exp(array_gpu)
# gpu_exp_array = exp_array_gpu.get()
if __name__ == '__main__':
n = 1000
t1 = timeit.timeit('npexp()', setup='from __main__ import npexp', number=n)
print (t1)
t2 = timeit.timeit('gmexp()', setup='from __main__ import gmexp', number=n)
print (t2)
这里也顺便介绍一下timeit的使用方法:这个函数的输入分别是:函数名、函数的导入方式、函数的重复次数。这里需要特别说明的是,如果在函数的导入方式中,不使用__main__
函数进行导入,即使是本文件下的python函数,也是无法被导入成功的。在输入的向量达到一定的规模大小时,我们发现在执行时间上相比于numpy有非常大的优势。当然还有一点需要注意的是,由于我们测试的是计算速度,原本使用了get()
函数将GPU中计算的结果进行导出,但是这部分其实不应该包含在计算的时间内,因此后来又注释掉了。具体的测试数据如下所示:
[dechin@dechin-manjaro pycuda]$ python3 array_exp.py -l 10000000
26.13127974300005
3.469969915000547
总结概要
使用GPU来进行计算,可以极大程度上的加速我们所需要计算的任务,这得益于GPU强大的自带的并行化技术。pycuda的出现,使得我们不需要手工去写GPU的C或者C++代码也可以调用GPU来进行计算,还提供了众多的python接口可以直接使用。经过测试,本文给出了一些pycuda的基本使用方法示例,以及初步的测试结果,从测试结果中我们进一步明确了pycuda的高性能特性。
版权声明
本文首发链接为:https://www.cnblogs.com/dechinphy/p/pycuda.html
作者ID:DechinPhy
更多原著文章请参考:https://www.cnblogs.com/dechinphy/
参考链接
python3使用pycuda执行简单GPU计算任务的更多相关文章
- CUDA刷新:GPU计算生态系统
CUDA刷新:GPU计算生态系统 CUDA Refresher: The GPU Computing Ecosystem 这是CUDA Refresher系列的第三篇文章,其目标是刷新CUDA中的关键 ...
- GPU计算的十大质疑—GPU计算再思考
http://blog.csdn.NET/babyfacer/article/details/6902985 原文链接:http://www.hpcwire.com/hpcwire/2011-06-0 ...
- OpenGL实现通用GPU计算概述
可能比較早一点做GPU计算的开发者会对OpenGL做通用GPU计算,随着GPU计算技术的兴起,越来越多的技术出现,比方OpenCL.CUDA.OpenAcc等,这些都是专门用来做并行计算的标准或者说接 ...
- OpenCL入门:(二:用GPU计算两个数组和)
本文编写一个计算两个数组和的程序,用CPU和GPU分别运算,计算运算时间,并且校验最后的运算结果.文中代码偏多,原理建议阅读下面文章,文中介绍了OpenCL相关名词概念. http://opencl. ...
- Julia:高性能 GPU 计算的编程语言
Julia:高性能 GPU 计算的编程语言 0条评论 2017-10-31 18:02 it168网站 原创 作者: 编译|田晓旭 编辑: 田晓旭 [IT168 评论]Julia是一种用于数学计 ...
- GPU计算的后CUDA时代-OpenACC(转)
在西雅图超级计算大会(SC11)上发布了新的基于指令的加速器并行编程标准,既OpenACC.这个开发标准的目的是让更多的编程人员可以用到GPU计算,同时计算结果可以跨加速器使用,甚至能用在多核CPU上 ...
- 从 SPIR-V 到 ISPC:将 GPU 计算转化为 CPU 计算
游戏行业越来越多地趋向于将计算工作转移到图形处理单元 (GPU) 中,导致引擎和/或工作室需要开发大量 GPU 计算着色器来处理不同的计算任务.但有时候在 CPU 上运行这些计算着色器非常方便,不必重 ...
- (一)tensorflow-gpu2.0学习笔记之开篇(cpu和gpu计算速度比较)
摘要: 1.以动态图形式计算一个简单的加法 2.cpu和gpu计算力比较(包括如何指定cpu和gpu) 3.关于gpu版本的tensorflow安装问题,可以参考另一篇博文:https://www.c ...
- (Matlab)GPU计算简介,及其与CPU计算性能的比较
1.GPU与CPU结构上的对比 2.GPU能加速我的应用程序吗? 3.GPU与CPU在计算效率上的对比 4.利用Matlab进行GPU计算的一般流程 5.GPU计算的硬件.软件配置 5.1 硬件及驱动 ...
随机推荐
- Leetcode6. Z 字形变换
> 简洁易懂讲清原理,讲不清你来打我~ 输入字符串,按下右上下右上排列后输出字符串
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引.2.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引 ...
- Java字节码增强技术
简单介绍下几种java字节码增强技术. ASM ASM是一个Java字节码操控框架,它能被用来动态生成类或者增强既有类的功能.ASM可以直接产生class文件,也可以在类被加载入Java虚拟机之前动态 ...
- HTTP协议GET方法传参最大长度理解误区
结论 HTTP 协议未规定GET和POST的长度 GET的最大长度是因为浏览器和WEB服务器显示了URI的长度 不同浏览器和WEB服务器,限制的最大长度不同 若要支持IE,则最大长度为2083 byt ...
- 谈一下python中的列表
Python标准库基于C语言实现了丰富的序列类型包括元组,列表,字典... 今天我们只谈list(列表) 1 列表(list) 最基础也是最重要的序列类型,他本身可以存放不同数据类型的元素.列表推导是 ...
- [WinError 10013]以一种访问权限不允许的方式做了一个访问套接字的尝试
Django报错截图如下: 原因分析:出现这种情况在Windows中很常见,就是端口被占用 解决步骤: 1:进入windows中的命令行窗口(win+R之后输入cmd就可以进去) 2:输入 net ...
- (Opencv4)二值化图像
(Opencv4)二值化图像 ret, dst = cv2.threshold(src, thresh, maxval, type) threshold : 极限,临界值,阈值 ret: 一个数 s ...
- PySpider爬取去哪儿攻略数据项目
1 创建项目 点击WEB中的Create创建项目 填入相关项目名和其实爬取URL 创建后进入项目首页 右边 Handler 是pyspider的主类,整个爬虫一个Handler,其中可定义爬虫的爬取. ...
- Android 开发必备的知识点——JVM基础【转】
image 1.JVM与操作系统的关系 Java Virtual Machine JVM 全称 Java Virtual Machine,也就是我们耳熟能详的 Java 虚拟机.它能识别 .class ...
- Docker安装Kong API Gateway并使用
我最新最全的文章都在南瓜慢说 www.pkslow.com,文章更新也只在官网,欢迎大家来喝茶~~ 1 简介 Kong不是一个简单的产品,本文讲的Kong主要指的是Kong API Gateway,即 ...