1. sortBy是Transformation算子,为什么会触发Action

  sortBy需要对数据进行全局排序,其需要用到RangePartitioner,而在创建RangePartitioner时需要大概知道有多少数据,以及数据的范围(采样),其内部获取这个范围(rangeBounds)是通过调用sample方法得到,在调用完sample后会调用collect方法,所以会触发Action

2. Spark SQL概述

2.1 Spark SQL定义:

 Spark SQL是Spark用来处理结构化数据的一个模块  

2.1.1 什么是DataFrames:  

  与RDD类似,DataFrame也是一个分布式数据容器【抽象的】。然而DataFrame更像DataFrame更像传统数据库的二维表格,除了数据以外,还记录数据的结构信息,即schema。同时,与Hive类似,DataFrame也是支持嵌套数据类型(struct、array和map)。从API易用性角度上看,DataFrame API 提供的是一套高层的关系操作,比函数式的RDD API要更加友好,门槛更低。由于与R和Pandas的DataFrame类似,Spark DataFrame很好的继承了传统单机数据分析的开发体验

DataFrame = RDD + Schema【更加详细的结构化描述信息】,以后在执行就可以生成执行计划,进行优化。它提供了一个编程抽象叫做DataFrame/Dataset,它可以理解为一个基于RDD数据模型的更高级数据模型,带有结构化元信息(schema),以及sql解析功能

Spark SQL可以将针对DataFrame/Dataset的各类SQL运算,翻译成RDD的各类算子执行计划,从而大大简化数据运算编程(请联想Hive)

3  DateFrame的创建

3.1 sparksql1.x创建DataFrame(SQLContext)

这种形式的写法能更好的理解SQLContext就是对SparkContext的包装增强

package com._51doit.spark07

import com._51doit.spark05.Boy
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.{SQLContext,DataFrame} object DataFrameDemo1 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("SparkSQL1x").setMaster("local[*]")
//sc是sparkcore,是用来创建RDD的
val sc = new SparkContext(conf)
// 要创建SQLContext,其相当于是对SparkContext包装增强
//SQLContext就可以创建DataFrame
val sqlContext: SQLContext = new SQLContext(sc)
// 使用SQLContext创建DataFrame(RDD+Schema)
val rdd = sc.parallelize(List("A,18,9999.99", "B,30,999.99", "C,28,999.99"))
//RDD跟schema
val rdd1: RDD[Boy] = rdd.map(line => {
val fields = line.split(",")
val n = fields(0)
val a = fields(1)
val f = fields(2)
Boy(n, a.toInt, f.toDouble)
})
//导入隐式转换
import sqlContext.implicits._
//将RDD转成DataFrame
val df = rdd1.toDF
// 使用SQL风格的API
df.registerTempTable("boy")
// 传入SQL
// sql方法是Transformation
val res: DataFrame = sqlContext.sql("SELECT name, fv, age FROM boy ORDER BY fv DESC, age ASC")
//触发Action,将sql运行的结果收集到Driver端返回
res.show()
//释放资源
sc.stop()
}
}

运行结果

3.2 sparksql2.x创建DataFrame(SparkSession)

SparkSession是对SparkContext的封装里面有SparkContext的引用,想获得sc直接使用SparkSession调用sparkContext

package com._51doit.spark07

import com._51doit.spark05.Boy
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, SparkSession} object SparkSQL2x {
def main(args: Array[String]): Unit = {
// 编程SparkSQL程序,创建DataFrame
val session: SparkSession = SparkSession.builder()
.appName("SparkSQL2x")
.master("local[*]")
.getOrCreate()
// SparkSession 是对SparkContext的封装,里面持有SparkContext的引用
val sc: SparkContext = session.sparkContext
val rdd: RDD[String] = sc.parallelize(List("A,18,9999.99", "B,30,999.99", "C,28,999.99"))
val boyRDD: RDD[Boy] = rdd.map(line => {
val fields: Array[String] = line.split(",")
val n = fields(0)
val a = fields(1)
val f = fields(2)
Boy(n, a.toInt, f.toDouble)
})
// 导入隐式转换
import session.implicits._
// 使用SparkSession创建DataFrame
val df: DataFrame = boyRDD.toDF()
df.createTempView("v_boy")
// 写SQL
val res: DataFrame = session.sql("SELECT name, fv, age FROM v_boy ORDER BY fv DESC, age ASC")
// 触发action
res.show()
session.stop()
}
}

运行结果同上

3.3  使用Scala的case class方式创建DataFrame

Boy

case class Boy(name:String, age:Int, fv: Double)

DataFrameDemo1(同2.2.2)

 此处创建DF的方法

可变成如下(完整的写法):

3.4 使用Scala的 class方式创建DataFrame

Man(此处要用到set方法设置属性,所以需要用@BeanProperty)

class Man {
@BeanProperty
var name:String = _
@BeanProperty
var age:Integer = _
@BeanProperty
var fv:Double = _
def this(name: String, age: Int, fv: Double) {
this()
this.name = name
this.age = age
this.fv = fv
}
}

DataFrameDemo2

package com._51doit.spark07

import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, SparkSession} object DataFrameDemo2 {
def main(args: Array[String]): Unit = {
//编程SparkSQL程序,创建DataFrame
val session: SparkSession = SparkSession.builder()
.appName("SparkSQL2x")
.master("local[*]")
.getOrCreate()
// 获取SparkContext
val sc: SparkContext = session.sparkContext
val rdd: RDD[String] = sc.parallelize(List("小明,18,999.99","老王,35,99.9","小李,25,99.9"))
val manRDD: RDD[Man] = rdd.map(line => {
val fields: Array[String] = line.split(",")
val name: String = fields(0)
val age: Int = fields(1).toInt
val fv: Double = fields(2).toDouble
new Man(name, age, fv)
})
// 创建DataFrame
// import session.implicits._
// manRDD.toDF()
val df: DataFrame = session.createDataFrame(manRDD, classOf[Man])
//建df创建一个视图
df.createTempView("v_boy")
//写SQL
val result: DataFrame = session.sql("SELECT name, fv, age FROM v_boy ORDER BY fv DESC, age ASC")
//触发Action
result.show()
session.stop()
}
}

注意,此处用不了rdd.toDF的形式来创建DataFrame

3.5  使用java的 class方式创建DataFrame 

  形式和scala的class几乎一样

package com._51doit.spark07

import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, SparkSession} object DataFrameDemo3 {
def main(args: Array[String]): Unit = {
//编程SparkSQL程序,创建DataFrame
val session: SparkSession = SparkSession.builder()
.appName("SparkSQL2x")
.master("local[*]")
.getOrCreate()
// 获取SparkContext
val sc: SparkContext = session.sparkContext
val rdd: RDD[String] = sc.parallelize(List("小明,18,999.99","老王,35,99.9","小李,25,99.9"))
val jPersonRDD: RDD[JPerson] = rdd.map(line => {
val fields: Array[String] = line.split(",")
val name: String = fields(0)
val age: Int = fields(1).toInt
val fv: Double = fields(2).toDouble
new JPerson(name, age, fv)
})
// 创建DateFrame
val df: DataFrame = session.createDataFrame(jPersonRDD, classOf[JPerson])
// 创建一个视图
df.createTempView("v_person")
//写SQL
val result: DataFrame = session.sql("SELECT name, fv, age FROM v_person ORDER BY fv DESC, age ASC") //触发Action
result.show() session.stop()
}
}

3.6  使用scala元组的方式创建DataFrame

创建形式如下:

object DataFrame4 {
def main(args: Array[String]): Unit = {
val session = SparkSession.builder()
.appName("DataFrame4")
.master("local[*]")
.getOrCreate()
// 获取SparkSession
val sc: SparkContext = session.sparkContext
val rdd: RDD[String] = sc.parallelize(List("小明,18,999.99","老王,35,99.9","小李,25,99.9"))
val tpRDD: RDD[(String, Int, Double)] = rdd.map(line => {
val fields: Array[String] = line.split(",")
val n = fields(0)
val a = fields(1)
val f = fields(2)
(n, a.toInt, f.toDouble)
})
// 创建DataFrame
import session.implicits._
val df: DataFrame = tpRDD.toDF
// 使用df创建一个视图
df.createTempView("v_person")
df.printSchema()
}
}

打印结果

这样写想要从表中获取数据是就只能使用_n,非常不方便

简单改变,在DF()方法中加入参数,如下

object DataFrame4 {
def main(args: Array[String]): Unit = {
val session = SparkSession.builder()
.appName("DataFrame4")
.master("local[*]")
.getOrCreate()
// 获取SparkSession
val sc: SparkContext = session.sparkContext
val rdd: RDD[String] = sc.parallelize(List("小明,18,999.99","老王,35,99.9","小李,25,99.9"))
val tpRDD: RDD[(String, Int, Double)] = rdd.map(line => {
val fields: Array[String] = line.split(",")
val n = fields(0)
val a = fields(1)
val f = fields(2)
(n, a.toInt, f.toDouble)
})
// 创建DataFrame
import session.implicits._
val df: DataFrame = tpRDD.toDF("name", "age", "face_value")
df.createTempView("v_person")
val result: DataFrame = session.sql("SELECT name, age, face_value FROM v_person ORDER BY face_value DESC, age ASC")
//触发Action
result.show()
session.stop()
}

3.7 通过row方法的形式创建DataFrame  

代码如下

package cn._51doit.spark.day07

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{DoubleType, IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Row, SparkSession} /** *
* 使用SparkSQL的ROW的方式
*/
object DataFrameDemo5 { def main(args: Array[String]): Unit = { //编程SparkSQL程序,创建DataFrame
val session: SparkSession = SparkSession.builder()
.appName("SparkSQL2x")
.master("local[*]")
.getOrCreate() //SparkSession是对SparkContext的封装,里面持有SparkContext的引用
val sc = session.sparkContext val rdd = sc.parallelize(List("laozhao,18,9999.99", "laoduan,30,999.99", "nianhang,28,999.99")) //RowRDD
val rowRDD: RDD[Row] = rdd.map(line => {
val fields = line.split(",")
val n = fields(0)
val a = fields(1)
val f = fields(2)
Row(n, a.toInt, f.toDouble)
}) //schema
// val schema = StructType(
// List(
// StructField("name", StringType),
// StructField("age", IntegerType),
// StructField("fv", DoubleType)
// )
// ) val schema = new StructType()
.add(StructField("name", StringType))
.add(StructField("age", IntegerType))
.add(StructField("fv", DoubleType)) val df: DataFrame = session.createDataFrame(rowRDD, schema)
df.printSchema()
session.stop()
}
}

3.8 通过解析json文件的形式创建DataFrame

package cn._51doit.spark.day07

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types._
import org.apache.spark.sql.{DataFrame, Row, SparkSession} /** *
* 读取JSON文件创建DataFrame
*/
object DataFrameDemo6 { def main(args: Array[String]): Unit = { //编程SparkSQL程序,创建DataFrame
val spark: SparkSession = SparkSession.builder()
.appName("SparkSQL2x")
.master("local[*]")
.getOrCreate() //从JSON文件中读取数据,并创建DataFrame
//RDD + Schema【json文件中自带Schema】
//
val df: DataFrame = spark.read.json("/Users/star/Desktop/user.json") //df.printSchema()
df.createTempView("v_user")
val result: DataFrame = spark.sql("SELECT name, age, fv FROM v_user WHERE _corrupt_record IS NULL")
result.show()
spark.stop()
}
}

3.9 读取csv文件的形式创建DataFrame

package cn._51doit.spark.day07

import org.apache.spark.sql.{DataFrame, SparkSession}

/** *
* 读取csv文件创建DataFrame
*/
object DataFrameDemo7 { def main(args: Array[String]): Unit = { //编程SparkSQL程序,创建DataFrame
val spark: SparkSession = SparkSession.builder()
.appName("SparkSQL2x")
.master("local[*]")
.getOrCreate() //从JSON文件中读取数据,并创建DataFrame
//RDD + Schema【csv文件中自带Schema】
//
val df: DataFrame = spark.read
.option("header", true) //将第一行当成表头
.option("inferSchema",true) //推断数据的类型,默认都是string
.csv("/Users/star/Desktop/user.csv") //默认指定名称为 _c0, _c1, _c2
//val df1: DataFrame = df.toDF("name", "age", "fv")
//给指定字段重命名
//val df1 = df.withColumnRenamed("_c0", "name") df.printSchema()
//df.createTempView("v_user") //val result: DataFrame = spark.sql("SELECT name, age, fv FROM v_user WHERE _corrupt_record IS NULL") df.show() spark.stop() } }

4. DSL风格API语法

  DSL风格API,就是用编程api的方式,来实现sql语法

  使用DSL风格API【就是直接调用DataFrame的算子,Transformation和Action】

DataFrameDSLAPI
object DataFrameDSLAPI {
def main(args: Array[String]): Unit = {
// 编程SparkSQL程序,创建DataFrame
val session: SparkSession = SparkSession.builder()
.appName(this.getClass.getSimpleName)
.master("local[*]")
.getOrCreate()
// 获取SparkContext
val sc: SparkContext = session.sparkContext
val rdd: RDD[String] = sc.parallelize(List("A,18,9999.99", "B,30,999.99", "C,28,999.99"))
val boyRDD: RDD[Boy] = rdd.map(line => {
val fields: Array[String] = line.split(",")
val name: String = fields(0)
val age: String = fields(1)
val fv: String = fields(2)
Boy(name, age.toInt, fv.toDouble)
})
// 导入隐式转换,创建DF
import session.implicits._
val df: DataFrame = boyRDD.toDF()
// 使用DSL风格API
val result: Dataset[Row] = df.select("name","fv").where($"fv" >= 1000)
//触发Action
result.show()
session.stop()
}
}

5.案例

wordcount案例

5.1 SQL风格

(1)结合flatmap算子(DSL风格的API,即算子)进行操作

package com._51doit.spark07

import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}

object SQLWordCount {
def main(args: Array[String]): Unit = {
val spark: SparkSession = SparkSession.builder()
.appName(this.getClass.getSimpleName)
.master("local[*]")
.getOrCreate()
// Dataset是更加智能的RDD,只有一列,命名默认为value
val lines: Dataset[String] = spark.read.textFile("F:/大数据第三阶段/spark/spark-day07/资料/words.txt")
// 导入隐式转换
import spark.implicits._
val words: Dataset[String] = lines.flatMap(_.split(" "))
// 将words注册成视图
words.createTempView("v_words")
// 写SQL
val res: DataFrame = spark.sql("SELECT value word, count(1) counts FROM v_words GROUP BY word ORDER BY counts DESC")
res.write.csv("E:/javafile/out1") spark.stop()
}
}

(2)直接通过SQL的形式

object SQLWordCountAdv {
def main(args: Array[String]): Unit = {
val spark: SparkSession = SparkSession.builder()
.appName(this.getClass.getSimpleName)
.master("local[*]")
.getOrCreate()
// Dataset是更加智能的RDD,只有一列,命名默认为value
val lines: Dataset[String] = spark.read.textFile("F:/大数据第三阶段/spark/spark-day07/资料/words.txt")
// 将words注册成视图
lines.createTempView("v_lines")
// 写SQL
spark.sql(
s"""
|SELECT word, COUNT(1) counts FROM
| (SELECT EXPLODE(words) word FROM
| (SELECT SPLIT(value, ' ') words FROM v_lines)
| )
| GROUP BY word ORDER BY counts DESC
|""".stripMargin
).show()
spark.stop()
}
}

5.2 DSL风格(更方便)  

(1) 

object DataSetWordCount1 {
def main(args: Array[String]): Unit = {
val spark: SparkSession = SparkSession.builder()
.appName(this.getClass.getSimpleName)
.master("local[*]")
.getOrCreate()
// Dataset是更加智能的RDD,只有一列,命名默认为value
val lines: Dataset[String] = spark.read.textFile("F:/大数据第三阶段/spark/spark-day07/资料/words.txt")
// 导入隐式转换
import spark.implicits._
// 调用DSL风格的API
val words: Dataset[String] = lines.flatMap(_.split(" "))
words.groupBy("value")
.count()
.orderBy($"count" desc)
.show()
spark.stop()
}
}

这种写法只能使用默认的列名,若想自己命名列的话可以使用withColumnRenamed,如下

(2)将结果写入数据库(Mysql) 

package com._51doit.spark07

import java.util.Properties

import org.apache.spark.sql.{DataFrame, Dataset, SaveMode, SparkSession}

object DataSetWordCount2 {
def main(args: Array[String]): Unit = {
val spark: SparkSession = SparkSession.builder()
.appName(this.getClass.getSimpleName)
.master("local[*]")
.getOrCreate()
// Dataset是更加智能的RDD,只有一列,命名默认为value
val lines: Dataset[String] = spark.read.textFile("F:/大数据第三阶段/spark/spark-day07/资料/words.txt")
// 导入隐式转换
import spark.implicits._
// 调用DSL风格的API
val words: DataFrame = lines.flatMap(_.split(" ")).withColumnRenamed("value", "word")
//使用DSL风格的API
//导入agg里面使用的函数
import org.apache.spark.sql.functions._
val result: DataFrame = words.groupBy("word").agg(count("*") as "counts").sort($"counts" desc)
//将数据保存到MySQL
val props = new Properties()
props.setProperty("driver", "com.mysql.jdbc.Driver")
props.setProperty("user", "root")
props.setProperty("password", "feng")
//触发Action
result.write.mode(SaveMode.Append).jdbc("jdbc:mysql://localhost:3306/db_user?characterEncoding=UTF-8&useSSL=true", "words", props)
println("haha")
spark.stop()
}
}

运行结果

 

  

大数据学习day24-------spark07-----1. sortBy是Transformation算子,为什么会触发Action 2. SparkSQL 3. DataFrame的创建 4. DSL风格API语法 5 两种风格(SQL、DSL)计算workcount案例的更多相关文章

  1. 大数据学习day29-----spark09-------1. 练习: 统计店铺按月份的销售额和累计到该月的总销售额(SQL, DSL,RDD) 2. 分组topN的实现(row_number(), rank(), dense_rank()方法的区别)3. spark自定义函数-UDF

    1. 练习 数据: (1)需求1:统计有过连续3天以上销售的店铺有哪些,并且计算出连续三天以上的销售额 第一步:将每天的金额求和(同一天可能会有多个订单) SELECT sid,dt,SUM(mone ...

  2. 大数据学习day21-----spark04------1. 广播变量 2. RDD中的cache 3.RDD的checkpoint方法 4. 计算学科最受欢迎老师TopN

    1. 广播变量  1.1 补充知识(来源:https://blog.csdn.net/huashetianzu/article/details/7821674) 之所以存在reduce side jo ...

  3. 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机)

    引言 在大数据学习系列之一 ----- Hadoop环境搭建(单机) 成功的搭建了Hadoop的环境,在大数据学习系列之二 ----- HBase环境搭建(单机)成功搭建了HBase的环境以及相关使用 ...

  4. 大数据学习系列之五 ----- Hive整合HBase图文详解

    引言 在上一篇 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机) 和之前的大数据学习系列之二 ----- HBase环境搭建(单机) 中成功搭建了Hive和HBase的环 ...

  5. 大数据学习系列之六 ----- Hadoop+Spark环境搭建

    引言 在上一篇中 大数据学习系列之五 ----- Hive整合HBase图文详解 : http://www.panchengming.com/2017/12/18/pancm62/ 中使用Hive整合 ...

  6. 大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 图文详解

    引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单 ...

  7. 大数据学习系列之九---- Hive整合Spark和HBase以及相关测试

    前言 在之前的大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 中介绍了集群的环境搭建,但是在使用hive进行数据查询的时候会非常的慢,因为h ...

  8. 大数据学习之Linux进阶02

    大数据学习之Linux进阶 1-> 配置IP 1)修改配置文件 vi /sysconfig/network-scripts/ifcfg-eno16777736 2)注释掉dhcp #BOOTPR ...

  9. 大数据学习之Linux基础01

    大数据学习之Linux基础 01:Linux简介 linux是一种自由和开放源代码的类UNIX操作系统.该操作系统的内核由林纳斯·托瓦兹 在1991年10月5日首次发布.,在加上用户空间的应用程序之后 ...

随机推荐

  1. std::string类详解

    之所以抛弃char*的字符串而选用C++标准程序库中的string类,是因为他和前者比较起来,不必 担心内存是否足够.字符串长度等等,而且作为一个类出现,他集成的操作函数足以完成我们大多数情况下(甚至 ...

  2. 为什么Hashtab的大小通常取远离2^n 的素数

    举个栗子 在Hashtab中我们通常 Hash(key) % M 来确定 key 所需要存放的位置 M就是Hashtab的大小,假设下面的两个场景 Hash(key1) = 108 Hash(key2 ...

  3. MySQL高级篇 | 索引介绍

    前言 性能下降SQL慢的原因 查询语句写的烂 索引失效 单值索引 复合索引 关联查询太多join(设计缺陷或不得已的需求) 服务器调优及各个参数设置(缓冲.线程数等) 索引是什么 MySQL官方对索引 ...

  4. node 中第三方模块的加载过程原理

    node 中第三方模块的加载过程原理 凡是第三方模块都必须通过 npm 来下载 使用的时候就可以通过require('包名') 的方式来进行加载才可以使用 不可能有任何一个第三方包和核心模块的名字是一 ...

  5. KMP算法,看这篇就够了!

    普通的模式匹配算法(BF算法) 子串的定位操作通常称为模式匹配算法 假设有一个需求,需要我们从串"a b a b c a b c a c b a b"中,寻找内容为"a ...

  6. Oracle中对数字加汉字的排序

    需求:有一列NAME, varchar2类型,内容如下 以上就是已经按order by name进行排序的,但不是我们想要的结果 现在需要只按数字进行排序 第一步:抽取数字由于数字有是一位的有是两位的 ...

  7. ajax的get方法获取豆瓣电影前10页的数据

    # _*_ coding : utf-8 _*_ # @Time : 2021/11/2 11:45 # @Author : 秋泊酱 # 1页数据 电影条数20 # https://movie.dou ...

  8. 菜鸡的Java笔记第二 - java 数据类型

    1.程序的本质实际上就是在于数据的处理上. JAVA中的数据类型有两类 基本数据类型:是进行内容的操作而不是内存的操作 数值型: 整型:byte(-128 ~ 127),short(-32768 ~ ...

  9. soft and hard limit

    soft限制了资源使用上限; soft可调整; hard限制了soft上限; 普通用户可使用ulimit -H调低hard limit. 限制的是一个进程可用资源, 而不是某个用户总和. man se ...

  10. Tomcat无法启动解决办法

    [2014-04-12 12:34:39] [error] [ 1080] 操作系统找不到已输入的环境选项. [2014-04-12 12:34:39] [error] [ 1052] Failed ...