【分桶概述】

  Hive表分区的实质是分目录(将超大表的数据按指定标准细分到指定目录),且分区的字段不属于Hive表中存在的字段;分桶的实质是分文件(将超大文件的数据按指定标准细分到分桶文件),且分桶的字段必须在Hive表中存在。

 
  分桶的意义在于:
    1. 可以提高多表join的效率(因为通过分桶已经将超大数据集提取出来了。假如原数据被分了4个桶,此时2表join的时候只需要读取符合条件的一个分桶,则理论上效率可提升4倍)
    2. 加速数据抽样的效率(理由同上,只需要按照指定规则抽取指定分桶的数据即可,不需要扫描全表)
 
  需要Hive表分桶的时候,我们可以注意到Reduce的任务数量 = 分桶的数量,也就是最终产生的分桶文件的个数,因为分桶表就是通过MapReduce任务计算而来。由此可见,其实桶的概念就是MapReduce的分区的概念,两者完全相同。
 
  分桶表取样语法的核心:

select * from tableName tablesample(bucket x out of y on colum)。其中:
x:表示从第x个桶中抽取数据
y:表示每y个桶中抽取一次数据(必须是分桶数量的倍数 or 因子)

【用法简介】

1.开启支持分桶

set hive.enforce.bucketing=true;    -- 默认:false --

  设置为 true 之后,mr 运行时会根据 bucket 的个数自动分配 reduce task的个数。

  当然,用户也可以通过 mapred.reduce.tasks 自己设置 reduce 任务个数,但分桶时不推荐使用。注意:一次作业产生的桶(文件数量)和 reduce task 个数一致)

2.往分桶表中加载数据

/* 往分桶表中插入数据的语法类似下面 */
insert into table bucket_table select columns from tbl; -- 全新插入 -- insert overwrite table bucket_table select columns from tbl; -- 覆盖重写 --

3.分桶表数据抽样

/*
抽样语法:TABLESAMPLE(BUCKET x OUT OF y)。其中:
x:表示从第x个桶中抽取数据
y:表示每y个桶中抽取一次数据(必须是分桶数量的倍数 or 因子)
*/
select * from bucket_table tablesample(bucket 1 out of 4 on columns);

【用法举例】

1. 假设本地文件 /root/hivedata/ft 中有以下内容:

zhang   12
lisi 34
wange 23
zhouyu 15
guoji 45
xiafen 48
yanggu 78
liuwu 41
zhuto 66
madan 71
sichua 89

2. 新建Hive常规表并导入本地文件:

hive> CREATE TABLE ft( id INT, name STRING, age INT)
> ROW FORMAT DELIMITED FIELDS TERMINATED BY'\t';
OK
Time taken: 0.216 seconds hive> load data local inpath'/root/hivedata/ft' into table ft;
Loading data to table hehe.ft
Table hehe.ft stats: [numFiles=1, totalSize=127]
OK
Time taken: 1.105 seconds hive> select *from ft;
OK
1 zhang 12
2 lisi 34
3 wange 23
4 zhouyu 15
5 guoji 45
6 xiafen 48
7 yanggu 78
8 liuwu 41
9 zhuto 66
10 madan 71
11 sichua 89
NULL NULL NULL
Time taken: 0.229 seconds, Fetched: 12 row(s)

3. 创建分桶表:

hive> create table fentong(
> id int,
> name string,
> age int,)clustered by(age) into 4 buckets -- 以字段age来划分成4个桶 --
> row format delimited fields terminated by ',';

  每行数据具体落入几号分桶的规则如下:

    1. 用表中指定的字段值(比如age)来除以桶的个数4;
    2. 结果取余数,也就是求模(若余数为0就放到1号桶,余数为1就放到2号桶,余数为2就放到3号桶,余数为3就放到4号桶)

4. 给分桶表导入数据:

hive> insert into table fentong select name,age from ft;

5. 查询分桶表数据以确认正确导入:

hive> select * from  fentong

6. 我们来看看分桶表的数据如何使用:

hive> select id, name, age from fentong tablesample(bucket 1 out of 4 on age);
OK
NULL NULL NULL
6 xiafen 48
1 zhang 12 hive> select id, name, age from fentong tablesample(bucket 2 out of 4 on age);
OK
11 sichua 89
8 liuwu 41
5 guoji 45 hive> select id, name, age from fentong tablesample(bucket 3 out of 4 on age);
OK
9 zhuto 66
7 yanggu 78
2 lisi 34

Hive的分桶表的更多相关文章

  1. 一起学Hive——创建内部表、外部表、分区表和分桶表及导入数据

    Hive本身并不存储数据,而是将数据存储在Hadoop的HDFS中,表名对应HDFS中的目录/文件.根据数据的不同存储方式,将Hive表分为外部表.内部表.分区表和分桶表四种数据模型.每种数据模型各有 ...

  2. hive中的分桶表

    桶表也是一种用于优化查询而设计的表类型.创建通表时,指定桶的个数.分桶的依据字段,hive就可以自动将数据分桶存储.查询时只需要遍历一个桶里的数据,或者遍历部分桶,这样就提高了查询效率 ------创 ...

  3. hive 分区表和分桶表

    1.创建分区表 hive> create table weather_list(year int,data int) partitioned by (createtime string,area ...

  4. 第2节 hive基本操作:11、hive当中的分桶表以及修改表删除表数据加载数据导出等

    分桶表 将数据按照指定的字段进行分成多个桶中去,说白了就是将数据按照字段进行划分,可以将数据按照字段划分到多个文件当中去 开启hive的桶表功能 set hive.enforce.bucketing= ...

  5. Hive 学习之路(五)—— Hive 分区表和分桶表

    一.分区表 1.1 概念 Hive中的表对应为HDFS上的指定目录,在查询数据时候,默认会对全表进行扫描,这样时间和性能的消耗都非常大. 分区为HDFS上表目录的子目录,数据按照分区存储在子目录中.如 ...

  6. Hive 系列(五)—— Hive 分区表和分桶表

    一.分区表 1.1 概念 Hive 中的表对应为 HDFS 上的指定目录,在查询数据时候,默认会对全表进行扫描,这样时间和性能的消耗都非常大. 分区为 HDFS 上表目录的子目录,数据按照分区存储在子 ...

  7. Hive 教程(四)-分区表与分桶表

    在 hive 中分区表是很常用的,分桶表可能没那么常用,本文主讲分区表. 概念 分区表 在 hive 中,表是可以分区的,hive 表的每个区其实是对应 hdfs 上的一个文件夹: 可以通过多层文件夹 ...

  8. Hive SQL之分区表与分桶表

    Hive sql是Hive 用户使用Hive的主要工具.Hive SQL是类似于ANSI SQL标准的SQL语言,但是两者有不完全相同.Hive SQL和Mysql的SQL方言最为接近,但是两者之间也 ...

  9. 入门大数据---Hive分区表和分桶表

    一.分区表 1.1 概念 Hive 中的表对应为 HDFS 上的指定目录,在查询数据时候,默认会对全表进行扫描,这样时间和性能的消耗都非常大. 分区为 HDFS 上表目录的子目录,数据按照分区存储在子 ...

随机推荐

  1. 查看filesystem type及ftype的值

    查看Filesystem type df -Th 查看ftype xfs_info [filesystem_name]  | grep ftype

  2. SpringBoot - Bean validation 参数校验

    目录 前言 常见注解 参数校验的应用 依赖 简单的参数校验示例 级联校验 @Validated 与 @Valid 自定义校验注解 前言 后台开发中对参数的校验是不可缺少的一个环节,为了解决如何优雅的对 ...

  3. 多次面试被拒,‘宅家苦修’30天,终获美团offer(含字节跳动/阿里/腾讯等大厂面试题整理)

    背景:双非渣本. 今年由于疫情,上半年一直在家里.2月份本来无忧无虑,呆在家里不给国家添乱的时候,发现身边的同学找到了大厂的offer.心里开始有点慌张.本来想在3月份如果能回到学校,就开始考研之路, ...

  4. 第2篇-JVM虚拟机这样来调用Java主类的main()方法

    在前一篇 第1篇-关于JVM运行时,开篇说的简单些 中介绍了call_static().call_virtual()等函数的作用,这些函数会调用JavaCalls::call()函数.我们看Java类 ...

  5. 一文让你彻底掌握ArcGisJS地图管理的秘密

    使用ArcGis开发地图 引用ArcGisJS 使用ArcGisJS开发地图,首先需要引入ArcGis的Js文件和CSS文件,引入方式有两种,一种是官网JS引用,一种是本地JS引用.如下: 官网JS引 ...

  6. Fluid + GooseFS 助力云原生数据编排与加速快速落地

    前言 Fluid 作为基于 Kubernetes 开发的面向云原生存算分离场景下的数据调度和编排加速框架,已于近期完成了 v0.6.0 版本的正式发布.腾讯云容器 TKE 团队一直致力于参与 Flui ...

  7. 基于AOP和HashMap原理学习,开发Mysql分库分表路由组件!

    作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 什么?Java 面试就像造火箭 单纯了! 以前我也一直想 Java 面试就好好面试呗 ...

  8. 【原创】冰蝎v3.0操作使用手册

    写在前面 近期冰蝎更新了内网穿透模块中的一些功能,有不少朋友不知道参数怎么填,希望能出一个使用指导手册,就借这个机会写一个"说明书"(文中有大量演示动图,请耐心等待加载). 基本信 ...

  9. Typora+Markdown便捷发布blog

    参考文章:https://www.cnblogs.com/Heroge/p/12459762.html 需要下载Typora和dotnet Typora下载链接:https://www.typora. ...

  10. DVWA-全等级验证码Insecure CAPTCHA

    DVWA简介 DVWA(Damn Vulnerable Web Application)是一个用来进行安全脆弱性鉴定的PHP/MySQL Web应用,旨在为安全专业人员测试自己的专业技能和工具提供合法 ...