题解 Yuno loves sqrt technology II
题目大意
有\(n\)个数,\(m\)个查询,每次查询一个区间内的逆序对个数。
\(n,m\le 10^5\)
思路
其实是为了锻炼二次离线才做这道题的。
不难想到可以有一个\(\Theta(n\sqrt n\log n)\)的方法,即用莫队,每次用树状数组计算变化的贡献。
然后我们就可以想到二次离线了。我们考虑计算\([l,r]\to [l,r^{'}]\)的贡献,可以发现\([l,r]\to[l,r+1]\)变换的贡献就是\([l,r]\)中比\(a_{r+1}\)大的个数,差分一下,就是\([1,r]\)中比\(a_{r+1}\)大的个数减去\([1,l-1]\)中比\(a_{r+1}\)大的个数。我们发现前面那个东西可以\(\Theta(n\log n)\)预处理出来,后面那个东西可以再次离线下来用值域分块\(\Theta(n\sqrt n)\)求出来。
我们再来考虑\([l,r]\to [l^{'},r]\)的变化。\([l,r]\to [l-1,r]\)的贡献就是\([l,r]\)中比\(a_{l-1}\)小的个数,差分一下,即是\([l,n]\)中比\(a_{l-1}\)小的个数减去\([r+1,n]\)中比\(a_{l-1}\)小的个数。前面那个东西同样可以离线\(\Theta(n\log n)\),后面那个也可以\(\Theta(n\sqrt n)\)值域分块。
于是,我们的总时间复杂度即为\(\Theta(m\sqrt n+n\sqrt n)\)。
但是这道题非常卡常。
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define ll long long
#define MAXN 100005
#define MAXM 355
ll ans[MAXN],sum1[MAXN],sum2[MAXN];
int n,m,un,tot,siz,h[MAXN],w[MAXN],bel[MAXN],tmp[MAXN],laz[MAXM],col[MAXM],cor[MAXM],tree[MAXN];
struct Query{
int l,r,id;
bool operator < (const Query &p)const{return (l / siz) != (p.l / siz) ? l < p.l : r < p.r;}
}q[MAXN];
struct node{int p,l,r,id;};
vector <node> vec1[MAXN],vec2[MAXN];
void add1 (int i,int p,int l,int r,int id){vec1[i].push_back (node {p,l,r,id});}
void add2 (int i,int p,int l,int r,int id){vec2[i].push_back (node {p,l,r,id});}
int lowbit (int x){return x & (-x);}
void update (int x,int k){for (;x <= n;x += lowbit (x)) tree[x] += k;}
int query (int x){int sum = 0;for (;x;x -= lowbit (x)) sum += tree[x];return sum;}
void pushup1 (int x){
if (laz[bel[x]]) for (Int i = col[bel[x]];i <= cor[bel[x]];++ i) w[i] += laz[bel[x]];laz[bel[x]] = 0;
for (Int i = col[bel[x]];i <= x;++ i) w[i] ++;
for (Int i = 1;i < bel[x];++ i) laz[i] ++;
}
void pushup2 (int x){
if (laz[bel[x]]) for (Int i = col[bel[x]];i <= cor[bel[x]];++ i) w[i] += laz[bel[x]];laz[bel[x]] = 0;
for (Int i = x;i <= cor[bel[x]];++ i) w[i] ++;
for (Int i = bel[x] + 1;i <= tot;++ i) laz[i] ++;
}
void solve (){//二次离线部分
int cnt = sqrt (un);col[tot = 1] = 1;
if (cnt * cnt < un) ++ cnt;
for (Int i = 1;i <= un;++ i){
bel[i] = tot;
if (i % cnt == 0) cor[tot] = i,col[++ tot] = i + 1;
}
cor[tot] = un;
for (Int i = 1;i <= n;++ i){
for (Int j = 0,len = vec1[i].size();j < len;++ j){
int id = vec1[i][j].id,p = vec1[i][j].p;
for (Int k = vec1[i][j].l;k <= vec1[i][j].r;++ k) ans[id] += 1ll * p * (laz[bel[h[k] + 1]] + w[h[k] + 1]);
}
pushup1 (h[i]);
}
for (Int i = 1;i <= tot;++ i) laz[i] = 0;
for (Int i = 1;i <= un + 1;++ i) w[i] = 0;
for (Int i = n;i >= 1;-- i){
for (Int j = 0,len = vec2[i].size();j < len;++ j){
int id = vec2[i][j].id,p = vec2[i][j].p;
for (Int k = vec2[i][j].l;k <= vec2[i][j].r;++ k) ans[id] += 1ll * p * (laz[bel[h[k] - 1]] + w[h[k] - 1]);
}
pushup2 (h[i]);
}
}
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
signed main(){
read (n,m),siz = 317;
for (Int i = 1;i <= n;++ i) read (h[i]),tmp[i] = h[i];
sort (tmp + 1,tmp + n + 1);un = unique (tmp + 1,tmp + n + 1) - tmp - 1;
for (Int i = 1;i <= n;++ i) h[i] = lower_bound (tmp + 1,tmp + un + 1,h[i]) - tmp;
for (Int i = 1;i <= m;++ i) read (q[i].l,q[i].r),q[i].id = i;sort (q + 1,q + m + 1);
for (Int i = 1;i <= n;++ i) sum1[i] = sum1[i - 1] + i - 1 - query (h[i]),update (h[i],1);
for (Int i = 1;i <= n;++ i) tree[i] = 0;
for (Int i = n;i;-- i) sum2[i] = sum2[i + 1] + query (h[i] - 1),update (h[i],1);
int l = 1,r = 0;
for (Int i = 1;i <= m;++ i){
if (r < q[i].r) ans[q[i].id] += sum1[q[i].r] - sum1[r],add1 (l,-1,r + 1,q[i].r,q[i].id),r = q[i].r;
if (r > q[i].r) ans[q[i].id] -= sum1[r] - sum1[q[i].r],add1 (l,1,q[i].r + 1,r,q[i].id),r = q[i].r;
if (l < q[i].l) ans[q[i].id] -= sum2[l] - sum2[q[i].l],add2 (r,1,l,q[i].l - 1,q[i].id),l = q[i].l;
if (l > q[i].l) ans[q[i].id] += sum2[q[i].l] - sum2[l],add2 (r,-1,q[i].l,l - 1,q[i].id),l = q[i].l;
}
solve ();
for (Int i = 1;i <= m;++ i) ans[q[i].id] += ans[q[i - 1].id];
for (Int i = 1;i <= m;++ i) write (ans[i]),putchar ('\n');
return 0;
}
题解 Yuno loves sqrt technology II的更多相关文章
- 有关二次离线和 Yuno loves sqrt technology II
二次离线 前置技能 莫队 修改查询 \(O(\sqrt n )-O(1)\) 平衡 概念 考虑朴素莫队离线询问,过程中维护信息从 \([l,r]\) 扩展为 \([l\pm 1,r\pm 1]\) , ...
- [Ynoi2019模拟赛]Yuno loves sqrt technology II
题目大意: 给定一个长为\(n\)的序列,\(m\)次询问,每次查询一个区间的逆序对数. 32MB. 解题思路: 出题人题解 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 二次离线莫队. 对于每个区 ...
- [Ynoi2019模拟赛]Yuno loves sqrt technology II(二次离线莫队)
二次离线莫队. 终于懂了 \(lxl\) 大爷发明的二次离线莫队,\(\%\%\%lxl\) 二次离线莫队,顾名思义就是将莫队离线两次.那怎么离线两次呢? 每当我们将 \([l,r]\) 移动右端点到 ...
- [洛谷P5048][Ynoi2019模拟赛]Yuno loves sqrt technology III
题目大意:有$n(n\leqslant5\times10^5)$个数,$m(m\leqslant5\times10^5)$个询问,每个询问问区间$[l,r]$中众数的出现次数 题解:分块,设块大小为$ ...
- [Ynoi2019模拟赛]Yuno loves sqrt technology I
题目描述 给你一个长为n的排列,m次询问,每次查询一个区间的逆序对数,强制在线. 题解 MD不卡了..TMD一点都卡不动. 强制在线的话也没啥好一点的方法,只能分块预处理了. 对于每个块,我们设lef ...
- [Ynoi2019模拟赛]Yuno loves sqrt technology III
题目大意: 给你一个长为n的序列a,m次询问,每次查询一个区间的众数的出现次数,强制在线. 解题思路: 出题人题解 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 首先得离散化. 分块后,预处理Fi, ...
- [Luogu5048] [Ynoi2019模拟赛]Yuno loves sqrt technology III[分块]
题意 长为 \(n\) 的序列,询问区间众数,强制在线. \(n\leq 5\times 10^5\). 分析 考虑分块,暴力统计出整块到整块之间的众数次数. 然后答案还可能出现在两边的两个独立的块中 ...
- [luogu5048] [Ynoi2019模拟赛] Yuno loves sqrt technology III
题目链接 洛谷. Solution 思路同[BZOJ2724] [Violet 6]蒲公英,只不过由于lxl过于毒瘤,我们有一些更巧妙的操作. 首先还是预处理\(f[l][r]\)表示\(l\sim ...
- 洛谷P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III(分块)
传送门 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 用蒲公英那个分块的方法做结果两天没卡过去→_→ 首先我们分块,预处理块与块之间的答案,然后每次询问的时候拆成整块和两边剩下的元素 整块的答案很简 ...
随机推荐
- ROS入门学习(基于Ubuntu16.04+kinetic)
本文主要部分全部来源于ROS官网的Tutorials. Setup roscore # making sure that we have roscore running rosrun turtlesi ...
- sql函数大全
sql函数大全 一.内部函数 1.内部合计函数 1)COUNT(*) 返回行数 2)COUNT(DISTINCT COLNAME) 返回指定列中唯一值的个数 3)SUM(COLNAME/EXPRESS ...
- 修改Windows7系统默认软件安装目录
Windows7系统默认软件安装目录都在C盘Program Files文件夹有时候我们需要把软件安装到其他地方,如果每次安装的时候都要重新选择一次十分麻烦,下面Windows7之家教你修改软件默认安装 ...
- JVM加载class文件的一些理解
Java是一种动态解释型语言,类(class)只有被加载到JVM中后才能运行.每当一个Java程序运行时,都会有一个对应的JVM实例,只有当程序运行结束后,这个JVM才会退出.JVM实例通过调用类的m ...
- AWS扩容EC2实例根空间
文章原文 aws 端操作 先在EC2 实例中选中磁盘 然后打开跟设备 修改大小后保存 ec2 端操作 lsblk 查看当前设备的磁盘编号 df -T -H 查看扩容前的空间大小并确定磁盘格式 grow ...
- python3 spider [ urllib.request ]
# # 导入urllib库的urlopen函数 # from urllib.request import urlopen # # 发出请求,获取html # html = urlopen(" ...
- Python - poetry(2)命令介绍
poetry 语法格式 poetry [-h] [-q] [-v [<...>]] [-V] [--ansi] [--no-ansi] [-n] <command> [< ...
- XXE从0到1
XXE从0到1 1. XXE概述 XXE(XML External Entity Injection)即XML外部实体注入.漏洞是在对不安全的外部实体数据进行处理时引发的安全问题. 下面我们主要介绍P ...
- (9)java Spring Cloud+Spring boot+mybatis企业快速开发架构之SpringCloud-搭建Eureka服务注册中心
首先创建一个 Maven 项目,取名为 eureka-server,在 pom.xml 中配置 Eureka 的依赖信息,代码如下所示. <!-- Spring Boot --> &l ...
- reeswitch http https ws wss nginx domain default port config
现代H5浏览器产业链越来越丰富,http+websocket+webrtc+sip组合已经是一种非常成熟的web原生音视频通讯解决方案 FreeSWITCH是一个开源的电话软交换平台,早在SIP年代就 ...