A. Extreme Subtraction

把这个数组差分一下,发现操作一的作用是把 \(d_1\) 的大小分给 \(d_i\),而操作二的作用是把 \(d_i\) 减去任意值,目标是把 \(d\) 的值都变为 \(0\)。对于 \(d\) 中大于 \(0\) 的值,就直接用操作二就行了;对于小于 \(0\) 的值,那它只能用 \(d_1\) 补偿;所以就比较一下 \(b_1\) 和 \(- \sum\limits_{i=2}^n[b_i<0]\times b_i\)的大小就行了。

B. Identify the Operations

遍历 \(b\),找到 \(b_i\) 在 \(a\) 中的位置,那么只能删除它左边的那个或右边的那个;但假如左边那个是将来的 \(b\) 的话,那就不能删了;同时会发现,删左边和删右边对序列的影响都是一样的,都是从两个能删的数变成两个能删的数。那就很简单了。

fin >> n >> m;
int mn = 1e9 + 1e2, mx = -1e9 - 1e2, ans = 1;
for (int i = 1; i <= n; i++) fin >> a[i];
for (int i = 1; i <= m; i++) fin >> b[i];
for (int i = 1; i <= n; i++) pnt[a[i]] = i;
for (int i = 1; i <= n; i++) vis[i] = 0;
for (int i = 1; i <= m; i++) vis[pnt[b[i]]] = true;
vis[0] = vis[n + 1] = true;
for (int i = 1; i <= m; i++)
{
(ans *= 2 - vis[pnt[b[i]] - 1] - vis[pnt[b[i]] + 1]) %= mod;
vis[pnt[b[i]]] = false;
}
fout << ans << Endl;

C. Graph Transpositions

惯例分层图。但是分层图的深度特别大怎么办?我们发现,\(2^{18}\) 次方就已经大于 \(n\) 了,所以暂且只建这么 \(18\) 层。

如果这 \(18\) 能到,那就 OK 了。如果不能,那就有讲究了。我们发现这时我们的第一追求是层数少,然后才是这层内的距离近。所以我们可以一层一层拓展,就可以保证层数少。

这么做还是 \(O(n^2)\)的,还需要加上一个剪枝——若当前点在以前的层中已经访问,那就不用再走它,于是复杂度就对了。还有就是 \(18\) 层以后的图上,存的 \(dis\) 就不用包括 \(2^k\) 次方了,就可以处理需要取模的最小值了。

D. Sum

神奇结论题:最多只有一列选了一部分,其他列要么全选要么不选。证明使用反证法就行了。这样问题就从多重背包变成了扣点一个点的 0/1 背包。这个问题可以使用分治或分块处理。

inline update(vector<u64>& f, int sze, u64 val) {
for (int i = k - sze; i >= 0; i--) {
f[i + sze] = max_(f[i + sze], f[i] + val);
}
} u64 ans; void solve(int l, int r, vector<u64> f)
{
if (l == r) {
for (int i = 0; i <= min_(k, m[l]); i++) {
ans = max_(ans, f[k - i] + a[l][i]);
}
return;
}
int mid = (l + r) >> 1; vector<u64> fl = f, fr = f;
for (int i = l; i <= mid; i++) update(fr, m[i], a[i][m[i]]);
for (int i = r; i > mid; i--) update(fl, m[i], a[i][m[i]]);
solve(l, mid, fl); solve(mid + 1, r, fr);
}

Codeforces Round #681 (Div. 1) Solution的更多相关文章

  1. Codeforces Round #466 (Div. 2) Solution

    从这里开始 题目列表 小结 Problem A Points on the line Problem B Our Tanya is Crying Out Loud Problem C Phone Nu ...

  2. 老年OIer的Python实践记—— Codeforces Round #555 (Div. 3) solution

    对没错下面的代码全部是python 3(除了E的那个multiset) 题目链接:https://codeforces.com/contest/1157 A. Reachable Numbers 按位 ...

  3. Codeforces Round #545 (Div. 1) Solution

    人生第一场Div. 1 结果因为想D想太久不晓得Floyd判环法.C不会拆点.E想了个奇奇怪怪的set+堆+一堆乱七八糟的标记的贼难写的做法滚粗了qwq靠手速上分qwqqq A. Skyscraper ...

  4. Codeforces Round 500 (Div 2) Solution

    从这里开始 题目地址 瞎扯 Problem A Piles With Stones Problem B And Problem C Photo of The Sky Problem D Chemica ...

  5. Codeforces Round #607 (Div. 1) Solution

    从这里开始 比赛目录 我又不太会 div 1 A? 我菜爆了... Problem A Cut and Paste 暴力模拟一下. Code #include <bits/stdc++.h> ...

  6. Codeforces Round #578 (Div. 2) Solution

    Problem A Hotelier 直接模拟即可~~ 复杂度是$O(10 \times n)$ # include<bits/stdc++.h> using namespace std; ...

  7. Codeforces Round #681 (Div. 2, based on VK Cup 2019-2020 - Final)【ABCDF】

    比赛链接:https://codeforces.com/contest/1443 A. Kids Seating 题意 构造一个大小为 \(n\) 的数组使得任意两个数既不互质也不相互整除,要求所有数 ...

  8. Codeforces Round #525 (Div. 2) Solution

    A. Ehab and another construction problem Water. #include <bits/stdc++.h> using namespace std; ...

  9. Codeforces Round #520 (Div. 2) Solution

    A. A Prank Solved. 题意: 给出一串数字,每个数字的范围是$[1, 1000]$,并且这个序列是递增的,求最多擦除掉多少个数字,使得别人一看就知道缺的数字是什么. 思路: 显然,如果 ...

随机推荐

  1. 【c++ Prime 学习笔记】第8章 IO库

    C++语言不直接处理输入输出,而是通过标准库中的一组类来处理IO 1.2节介绍的IO库: istream(输入流)类型,提供输入 ostream(输出流)类型,提供输出 cin,是istream对象, ...

  2. OO_JAVA_JML系列第三次作业__架构之谈

    OO_JAVA_JML系列第三次作业 ## ----架构之谈 目录 OO_JAVA_JML系列第三次作业 出发点 操作的可分离性 操作本身的多样性 实现手段:表驱动编程 储存 注册 出发点 操作的可分 ...

  3. 2021.1.8 NKOJ 周赛总结

    意料之中..... A:nkoj 3900 AC小程序 http://oi.nks.edu.cn/zh/Problem/Details/3900 A题比较简单,单独分析一下A和C,其实就是一个斐波那契 ...

  4. cadence 技巧

    pcb中如何选中完整的一条网络? 1 edit  properties  右边 find nets 2 cadence 选中不同的网络高亮 display--->assign color在opt ...

  5. Windows7下面手把手教你安装Django - Hongten

    我所使用的操作系统是Windows7,内存是2G 在搜索了一些资料发现,对于Django的安装,详细的真的很少,都说的很简化,然而,这篇blog可以手把手教你成功安装Django 对于Django的详 ...

  6. telnet IP 端口 的作用

    测试远程服务器的端口是否开启

  7. matlab与python scipy.signal中 freqs freqz 中w,什么时候是角频率,什么时候是真实的工程中使用的采样频率Hz,如何转化

    matlab与python scipy.signal中的freqs,freqz频率分析函数,输出的w,有时候是角频率,有时候是真实频率,容易搞混,这里对比一下. 0.  精要总结: 1) freqs: ...

  8. linux 安装docker(一)

    1.安装环境 此处在Centos7进行安装,可以使用以下命令查看CentOS版本 lsb_release -a 在 CentOS 7安装docker要求系统为64位.系统内核版本为 3.10 以上,可 ...

  9. "简单"的优化--希尔排序也没你想象中那么难

    写在前边 大家好,我是melo,一名大二上软件工程在读生,经历了一年的摸滚,现在已经在工作室里边准备开发后台项目啦. 不过这篇文章呢,还是想跟大家聊一聊数据结构与算法,学校也是大二上才开设了数据结构这 ...

  10. EF Core 小技巧:迁移已经应用到数据库,如何进行迁移回退操作?

    场景描述:项目中存在两个迁移 Teacher 和 TeachingPlan ,TeachingPlan 在 Teacher 之后创建,并且已经执行 dotnet ef database update ...