目录

Wang H, Wang Y, Zhou Z, et al. CosFace: Large Margin Cosine Loss for Deep Face Recognition[C]. computer vision and pattern recognition, 2018: 5265-5274.

@article{wang2018cosface:,

title={CosFace: Large Margin Cosine Loss for Deep Face Recognition},

author={Wang, Hao and Wang, Yitong and Zhou, Zheng and Ji, Xing and Gong, Dihong and Zhou, Jingchao and Li, Zhifeng and Liu, Wei},

pages={5265--5274},

year={2018}}

本文从angular margin角度提出了对交叉熵损失的一个改进.

主要内容

一般的softmax交叉熵损失为

\[L_s = \frac{1}{N}\sum_{i=1}^N -\log \frac{e^{f_{y_i}}}{\sum_{j=1}^C e^{f_{y_j}}},
\]

其中

\[f_j = W^T_jx=\|W_j\| \|x\| \cos \theta_j,
\]

固定\(\|W_j\|=1, \|x\|=s\), 则

\[L_{ns} = \frac{1}{N} \sum_i -\log \frac{e^{s\cos(\theta_{y_i},i)}}{\sum_j e^{s \cos(\theta_{y_j}, i)}}
\]

只与角度angular margin有关, 所以实际上, 一个类别属于\(i\)就是当

\[\cos \theta_i > \cos \theta_j, \forall j\not = i,
\]

为了给其增加一些难度, 我们可以

\[\cos \theta_i - m > \cos \theta_j, \forall j\not = i,
\]

即我们在\(\cos \theta_i > \cos \theta_j\)的基础上, 进一步要求其angular margin进一步提高, 这就是large angular margin的思想.

于是本文的损失为:

cosface: large margin cosine loss for deep face recognition的更多相关文章

  1. 基于Caffe的Large Margin Softmax Loss的实现(中)

    小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文:  http://www.miao ...

  2. Large Margin Softmax Loss for Speaker Verification

    [INTERSPEECH 2019接收] 链接:https://arxiv.org/pdf/1904.03479.pdf 这篇文章在会议的speaker session中.本文主要讨论了说话人验证中的 ...

  3. 基于Caffe的Large Margin Softmax Loss的实现(上)

    小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L- ...

  4. A Discriminative Feature Learning Approach for Deep Face Recognition

    url: https://kpzhang93.github.io/papers/eccv2016.pdf year: ECCV2016 abstract 对于人脸识别任务来说, 网络学习到的特征具有判 ...

  5. [论文阅读] A Discriminative Feature Learning Approach for Deep Face Recognition (Center Loss)

    原文: A Discriminative Feature Learning Approach for Deep Face Recognition 用于人脸识别的center loss. 1)同时学习每 ...

  6. Center Loss - A Discriminative Feature Learning Approach for Deep Face Recognition

    URL:http://ydwen.github.io/papers/WenECCV16.pdf这篇论文主要的贡献就是提出了Center Loss的损失函数,利用Softmax Loss和Center ...

  7. Large Margin DAGs for Multiclass Classification

    Abstract We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which i ...

  8. 《Ranked List Loss for Deep Metric Learning》CVPR 2019

    Motivation: 深度度量学习的目标是学习一个嵌入空间来从数据点中捕捉语义信息.现有的成对或者三元组方法随着模型迭代过程会出现大量的平凡组导致收敛缓慢.针对这个问题,一些基于排序结构的损失取得了 ...

  9. 吴恩达机器学习笔记43-SVM大边界分类背后的数学(Mathematics Behind Large Margin Classification of SVM)

    假设我有两个向量,

随机推荐

  1. day18定时任务

    day18定时任务 什么是定时任务 类似日常生活之中的闹钟:主要用于定时执行某些命令,达到定时处理数据的作用. 作用: 1.类似生活中使用的闹钟 2.可以自动完成操作命令 3.定时备份系统数据信息 定 ...

  2. Assertion failure in -[UISectionRowData refreshWithSection:tableView:tableViewRowData:], /Source

    1. *** Assertion failure in -[UISectionRowData refreshWithSection:tableView:tableViewRowData:], /Sou ...

  3. mysql explain using index condition

    Using where:表示优化器需要通过索引回表查询数据:Using index:表示直接访问索引就足够获取到所需要的数据,不需要通过索引回表:Using index condition:在5.6版 ...

  4. TCP协议三步挥手与四步挥手

    关于TCP协议 TCP(Transmission Control Protocol, 传输控制协议)是一种面向连接的.可靠的.基于字节流的传输层通信协议.与之对应的是UDP(User Datagram ...

  5. 【力扣】95. 不同的二叉搜索树 II

    二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的 ...

  6. 接下来一段时间会对大家进行网络通信的魔鬼训练-理解socket

    引子 下一篇标题是<深入理解MQ生产端的底层通信过程>,建议文章读完之前.或者读完之后,再读一遍我之前写的<RabbitMQ设计原理解析>,结合理解一下. 我大学时流行过一个韩 ...

  7. 『与善仁』Appium基础 — 23、操作滑动的方式

    目录 1.swipe滑动 2.scroll滑动 3.drag拖拽事件 4.滑动方法小结 5.拓展:多次滑动 6.综合练习 在Appium中提供了三种滑动的方式,swipe滑动.scroll滑动.dra ...

  8. centos7部署mysql-5.7

    目录 一.环境声明 二.程序部署 三.更改初始密码 一.环境声明 [mysql-Server] 主机名 = host-1 系统 = centos-7.3 地址 = 1.1.1.1 软件 = mysql ...

  9. Nginx HTTP块配置

    1 配置块的嵌套 http { upstream {...} split_clients {...} map {...} geo {...} server { if () {...} location ...

  10. win10 linux ubuntu子系统 使用adb

    条件 本文已经默认你已经在win10系统下成功配置了ubuntu子系统,所以唯一的条件就是windows上的adb 版本和ubuntu子系统的adb版本一致. 方法 怎么来保证adb 版本一致呢?在本 ...