「SNOI2017」一个简单的询问
「SNOI2017」一个简单的询问
简单的解法
显然可以差分一下。
\]
因为都是1为起始,那么记两个cnt数组,表示前缀,然后可以分成四个区间,莫队。
#include <bits/stdc++.h>
#define rep(q, a, b) for (int q = a, q##_end_ = b; q <= q##_end_; ++q)
#define dep(q, a, b) for (int q = a, q##_end_ = b; q >= q##_end_; --q)
#define mem(a, b) memset(a, b, sizeof a)
#define debug(a) cerr << #a << ' ' << a << "___" << endl
using namespace std;
bool cur1;
char buf[10000000], *p1 = buf, *p2 = buf;
#define Getchar() p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 10000000, stdin), p1 == p2) ? EOF : *p1++
void in(int &r) {
static char c;
r = 0;
while (c = Getchar(), c < 48)
;
do
r = (r << 1) + (r << 3) + (c ^ 48);
while (c = Getchar(), c > 47);
}
const int mn = 50005;
int K, n, val[mn];
long long ans[mn];
struct node {
int l, r, id, ty;
bool operator<(const node &A) const {
return l / K == A.l / K ? (l / K & 1 ? r > A.r : r < A.r) : l / K < A.l / K;
}
} an[mn * 4];
int cnt[mn], cnt1[mn];
long long mid_ans;
bool cur2;
int main() {
// cerr<<(&cur2-&cur1)/1024.0/1024<<endl;
in(n);
K = sqrt(n) + 1;
rep(q, 1, n) in(val[q]);
int Q;
in(Q);
int l, r, l1, r1;
int ct = 0;
rep(q, 1, Q) {
in(l), in(r), in(l1), in(r1);
an[++ct] = { r, r1, q, 1 };
if (l > 1) {
an[++ct] = { l - 1, r1, q, -1 };
if (l1 > 1)
an[++ct] = { l1 - 1, l - 1, q, 1 };
}
if (l1 > 1)
an[++ct] = { l1 - 1, r, q, -1 };
}
sort(an + 1, an + ct + 1);
l = 0, r = 0;
rep(q, 1, ct) {
while (l > an[q].l) mid_ans -= cnt1[val[l]], --cnt[val[l--]];
while (r < an[q].r) mid_ans += cnt[val[++r]], ++cnt1[val[r]];
while (l < an[q].l) mid_ans += cnt1[val[++l]], ++cnt[val[l]];
while (r > an[q].r) mid_ans -= cnt[val[r]], --cnt1[val[r--]];
ans[an[q].id] += mid_ans * an[q].ty;
}
rep(q, 1, Q) printf("%lld\n", ans[q]);
return 0;
}
麻烦的解法
对于两个区间\([l,r],[l1,r1](l \leq l1)\),分三类容斥:
- 没有交
- \([l1,r1]\)被\([l,r]\)包含
- 两个区间相交且没有包含关系
对于1
\([l,r]\)值为K数有x,\([r+1,l1-1]\)值为K数有y,\([l1,r1]\)值为K数有z。
\]
因此可以拆成4个区间计算。
对于2
\([l,l1-1]\)值为K数有x,\([l1,r1]\)值为K数有y,\([r1+1,r]\)值为K数有z。
\]
因此可以拆成4个区间计算。
对于3
\([l,l1-1]\)值为K数有x,\([l1,r]\)值为K数有y,\([r+1,r1]\)值为K数有z。
\]
因此可以拆成4个区间计算。
综上
一遍莫队即可,计算区间中相同数个数的平方的和。
#include<bits/stdc++.h>
#define rep(q,a,b) for(int q=a,q##_end_=b;q<=q##_end_;++q)
#define dep(q,a,b) for(int q=a,q##_end_=b;q>=q##_end_;--q)
#define mem(a,b) memset(a,b,sizeof a )
#define debug(a) cerr<<#a<<' '<<a<<"___"<<endl
using namespace std;
bool cur1;
char buf[10000000],*p1=buf,*p2=buf;
#define Getchar() p1==p2&&(p2=(p1=buf)+fread(buf,1,10000000,stdin),p1==p2)?EOF:*p1++
void in(int &r) {
static char c;
r=0;
while(c=Getchar(),c<48);
do r=(r<<1)+(r<<3)+(c^48);
while(c=Getchar(),c>47);
}
const int mn=50005;
int K,n,val[mn];
long long ans[mn];
struct node{
int l,r,id,ty;
bool operator <(const node &A)const{
return l/K==A.l/K?(l/K&1?r>A.r:r<A.r):l/K<A.l/K;
}
}an[mn*4];
int cnt[mn];
long long mid_ans;
bool cur2;
int main(){
// cerr<<(&cur2-&cur1)/1024.0/1024<<endl;
in(n);
K=sqrt(n)+1;
rep(q,1,n)in(val[q]);
int Q;
in(Q);
int l,r,l1,r1;
int ct=0;
rep(q,1,Q){
in(l),in(r),in(l1),in(r1);
if(l>l1)swap(l,l1),swap(r,r1);
if(r<l1){
an[++ct]={l,r1,q,1};
an[++ct]={l,l1-1,q,-1};
an[++ct]={r+1,r1,q,-1};
if(l1-1>=r+1)an[++ct]={r+1,l1-1,q,1};
}else if(r1<=r){
an[++ct]={l,r1,q,1};
an[++ct]={l1,r,q,1};
if(l<=l1-1)an[++ct]={l,l1-1,q,-1};
if(r1+1<=r)an[++ct]={r1+1,r,q,-1};
}else{
an[++ct]={l,r1,q,1};
an[++ct]={l1,r,q,1};
if(l<=l1-1)an[++ct]={l,l1-1,q,-1};
if(r+1<=r1)an[++ct]={r+1,r1,q,-1};
}
}
sort(an+1,an+ct+1);
mid_ans=1,cnt[val[1]]=1;
l=1,r=1;
rep(q,1,ct){
while(l>an[q].l)--l,mid_ans+=(cnt[val[l]]++)<<1|1;
while(r<an[q].r)++r,mid_ans+=(cnt[val[r]]++)<<1|1;
while(l<an[q].l)mid_ans-=(--cnt[val[l]])<<1|1,++l;
while(r>an[q].r)mid_ans-=(--cnt[val[r]])<<1|1,--r;
ans[an[q].id]+=mid_ans*an[q].ty;
}
rep(q,1,Q)printf("%lld\n",ans[q]>>1);
return 0;
}
「SNOI2017」一个简单的询问的更多相关文章
- loj #2254. 「SNOI2017」一个简单的询问
#2254. 「SNOI2017」一个简单的询问 题目描述 给你一个长度为 NNN 的序列 aia_iai,1≤i≤N1\leq i\leq N1≤i≤N,和 qqq 组询问,每组询问读入 l1 ...
- loj2254 「SNOI2017」一个简单的询问
ref #include <algorithm> #include <iostream> #include <cstdio> #include <cmath& ...
- [SNOI2017]一个简单的询问
[SNOI2017]一个简单的询问 题目大意: 给定一个长度为\(n(n\le50000)\)的序列\(A(1\le A_i\le n)\),定义\(\operatorname{get}(l,r,x) ...
- 【BZOJ5016】[Snoi2017]一个简单的询问 莫队
[BZOJ5016][Snoi2017]一个简单的询问 Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计 ...
- loj #2255. 「SNOI2017」炸弹
#2255. 「SNOI2017」炸弹 题目描述 在一条直线上有 NNN 个炸弹,每个炸弹的坐标是 XiX_iXi,爆炸半径是 RiR_iRi,当一个炸弹爆炸时,如果另一个炸弹所在位置 X ...
- loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点
loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点 链接 loj 思路 用交错关系建出图来,发现可以直接缩点,拓扑统计. 完了吗,不,瓶颈在于边数太多了,线段树优化建图. 细节 ...
- bzoj P5016[Snoi2017]一个简单的询问——solution
Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. Input ...
- LOJ——#2256. 「SNOI2017」英雄联盟
https://loj.ac/problem/2256 题目描述 正在上大学的小皮球热爱英雄联盟这款游戏,而且打的很菜,被网友们戏称为「小学生」.现在,小皮球终于受不了网友们的嘲讽,决定变强了,他变强 ...
- bzoj 5016: [Snoi2017]一个简单的询问
Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. Input 第 ...
随机推荐
- Spring中的@Bean注解
@Bean 基础概念 @Bean:Spring的@Bean注解用于告诉方法,产生一个Bean对象,然后这个Bean对象交给Spring管理.产生这个Bean对象的方法Spring只会调用一次,随后这个 ...
- C9软件工程非一线城市面试经验
本人C9软件工程毕业,由于家境一般,不想去一线城市面对天价房价,所以面的都不是互联网大厂. 人生第一面: 2021.11.29 五某汽车 软件工程岗面试 提前3天发了短信,然后拉了一个面试微信群 1. ...
- Wavelet Transforms
目录 目标 小波变换 Scaling Functions Wavelet Functions 二者的联系 离散的情形 高效变换 二维的情形 示例 目标 首先, 既然是变换, 那么就是从一个域到另一个域 ...
- css怎么实现雪人
冬天来了,怎么能少的了雪人呢,不管是现实中还是程序员的代码中统统都的安排上,那就一次安排几个雪人兄弟,咱们先看效果图: 有喜欢的就赶紧cv拿走吧!!! 其详细代码如下: 图1 html部分: < ...
- CapstoneCS5210|HDMI转VGA音视频转接线|CS5210转换器方案芯片
Capstone最新推出的一款HDMI转VGA音视频转接线或者转换器方案芯片CS5210. 其设计的优势在于内置晶振,外围电路器件较少设计简单,芯片封装集成度较高,方案BOM成本低,相比其他方案产品更 ...
- CapstoneCS5212替代RTD2166|DP转VGA转换电路设计方法|CS5212替代方案
Capstone CS5212适用于设计DP转VGA转换电路,主要用在嵌入式单片机基于工业机或者INTEL X86主板上面,也适用于多个电子配件市场和显示器应用程序,如笔记本电脑.主板.台式机.适配器 ...
- 基于Spring MVC + Spring + MyBatis的【医院就诊挂号系统】
资源下载:https://download.csdn.net/download/weixin_44893902/21727306 一.语言和环境 1.实现语言: JAVA语言. 2.环境要求: MyE ...
- Java 中 this 和 super 的用法及案例
this this 是自身的一个对象,代表对象本身,可以理解为:指向对象本身的一个指针. this 的用法在 Java 中大体可以分为3种: 1.普通的直接引用 这种就不用讲了,this 相当于是指向 ...
- PDF的信息提取的问题
PDF对企业应用来说是刚需. 然而PDF显然不是一种对机器友好的格式,它只是对人类友好,就是说方便阅读打印,但让程序去提取其中的内容却很难.下面简单说说为什么是这样. 以前还读书的时候(20+ ...
- linux(CentOS7) 之 克隆虚拟机并配置网络(固定ip)
克隆机器 原机关机状态下,克隆. 下一步 选择当前状态,下一步 选择创建完整克隆,下一步 设置虚拟机名称(完成后可以修改).克隆机安装位置,下一步 等待克隆完成 克隆完成 配置网络 添加网卡(因为物理 ...