定义

第\(x\)次操作后,势能为\(\phi(x)\),该操作实际复杂度\(c(x)\),均摊复杂度\(a(x)\)。

定义\(a(x)=c(x)+\phi(x)-\phi(x-1)\)。

那么总复杂度为$\phi(n)-\phi(0)+\sum c(x) $。

简单应用

Q:对于一个初始为0的二进制数,每次+1,求n次操作复杂度。

A:定义\(\phi(x)\)为\(i\)次操作后1的个数,对于一次+1 ,1个0->1,x个1->0,那么\(a(x)= (1+x) + (1-x)=2\),则总复杂度\(o(n)\),常数2。

splay分析

定义x节点的势能为\(\chi(x)=log(size(x))\)(size表示子树大小)。

那么\(\phi(n)-\phi(0) \leq n log(n)\)。

双旋分三种情况(y=fa[x],z=fa[y]):

  1. y为根
  2. x,y,z同一条直线
  3. x,y,z不为同一条直线

(弄错了不想改...祖孙关系以图为准)

对于1:

\[c(x)=1+ \chi(x^{'})+\chi(y^{'})-\chi(x)-\chi(y)=1+\chi(y^{'})-\chi(y)
\]

对于2:

\[c(x)=2+\chi(x^{'})+\chi(y^{'})+\chi(z^{'})-\chi(x)-\chi(y)-\chi(z)
\]
\[c(x)=2+\chi(x^{'})+\chi(y^{'})-\chi(y)-\chi(z) \leq 2+\chi(z^{'})+\chi(x^{'})-2\chi(z)
\]

\[\chi(x^{'})+\chi(z)-2\chi(z^{'})=log({(size(2+1)+1)\times(size(3+4)+1)\over {(3+size(3+4+2+1))}^2}) \leq log( {1 \over 4})=-2
\]

那么

\(c(x)\leq 2+\chi(z^{'})+\chi(x^{'})-2\chi(z) \leq 3(\chi(z^{'})-\chi(z))\)

对于3:

\[c(x)=2+\chi(x^{'})+\chi(y^{'})+\chi(z^{'})-\chi(x)-\chi(y)-\chi(z)
\]
\[c(x)=2+\chi(x^{'})+\chi(y^{'})-\chi(y)-\chi(z) \leq 2+\chi(x^{'})+\chi(y^{'})-2\chi(z)
\]

\[2\chi(z^{'})-\chi(x^{'})-\chi(y^{'})=log({(size(1+3+4+2)+3)^2 \over{(size(1+3)+1) \times (size(4+2)+1)}}) \geq 2
\]

\[c(x) \leq 2(\chi(z^{'})-\chi(z))
\]

综上

可以把\((\chi(z^{'})-\chi(z))\)的常数都看为3。

一次splay复杂度为\(3 (\chi(root)-\chi(z))+1 \leq 3 log(n)+1\)。

然后这个还要乘上rotate的常数。

不过在实际应用下,可以认为常数为8。

势能分析(splay分析)的更多相关文章

  1. x264源代码 概述 框架分析 架构分析

    函数背景色 函数在图中以方框的形式表现出来.不同的背景色标志了该函数不同的作用: 白色背景的函数:不加区分的普通内部函数. 浅红背景的函数:libx264类库的接口函数(API). 粉红色背景函数:滤 ...

  2. 转:[gevent源码分析] 深度分析gevent运行流程

    [gevent源码分析] 深度分析gevent运行流程 http://blog.csdn.net/yueguanghaidao/article/details/24281751 一直对gevent运行 ...

  3. Qt Creator Valgrind内存分析前端(分析Nginx内存)

    Linux上使用Qt Creator进行C/C++开发http://my.oschina.net/eechen/blog/166969Qt Creator GDB调试前端(调试Nginx):http: ...

  4. Python之路,Day22 - 网站用户访问质量分析监测分析项目开发

    Python之路,Day22 - 网站用户访问质量分析监测分析项目开发   做此项目前请先阅读 http://3060674.blog.51cto.com/3050674/1439129  项目实战之 ...

  5. MapReduce源代码分析MapTask分析

    前言 MapReduce该分析是基于源代码Hadoop1.2.1代码分析进行的基础上. 该章节会分析在MapTask端的详细处理流程以及MapOutputCollector是怎样处理map之后的col ...

  6. ChIP-seq 核心分析 下游分析

    http://icb.med.cornell.edu/wiki/index.php/Elementolab/ChIPseeqer_Tutorial [怪毛匠子 整理] ChIP-seq[核心分析 下游 ...

  7. Hadoop项目实战-用户行为分析之分析与设计

    1.概述 本课程的视频教程地址:<用户行为分析之分析与设计> 下面开始本教程的学习,本教程以用户行为分析案例为基础,带着大家对项目的各个指标做详细的分析,对项目的整体设计做合理的规划,让大 ...

  8. 20145307陈俊达_安卓逆向分析_APKtools分析smail

    20145307陈俊达_安卓逆向分析_APKtools分析smail 引言 真刺激呢!到了第二篇博客了,难度开始加大,之前是简单的dex2jar和有图形界面的jd-gui,现在来隆重介绍强大的反汇编工 ...

  9. linux服务器宕机分析/性能瓶颈分析

    linux服务器宕机分析/性能瓶颈分析   服务器宕机原因很多,资源不足.应用.硬件.系统内核bug等,以下一个小例子 服务器宕机了,首先得知道服务器宕机的时间点,然后分析日志查找原因 1.last ...

随机推荐

  1. 实战!Spring Boot 整合 阿里开源中间件 Canal 实现数据增量同步!

    大家好,我是不才陈某~ 数据同步一直是一个令人头疼的问题.在业务量小,场景不多,数据量不大的情况下我们可能会选择在项目中直接写一些定时任务手动处理数据,例如从多个表将数据查出来,再汇总处理,再插入到相 ...

  2. MySQL 中常见的时间类型有三种 DATE, DATETIME 和 TIMESTAMP

    MySQL 中常见的时间类型有三种 DATE, DATETIME 和 TIMESTAMP,其中 DATE 类型用于表示日期,但是不会包含时间,格式为 YYYY-MM-DD,而 DATETIME 和 T ...

  3. leetcode日记本

    写在前面: 2019.6开始经过一年的学习,我依然没有学会算法,依然停留在最基本的阶段,面对题目依然一头雾水 但是难不是放弃的理由,根据毛主席的论持久战原理,我决定一天看一点循序渐进,相信总有一天可以 ...

  4. 【C\C++笔记】数组指针越界

    指针越界,t的数组指针越界,修改了c的内容. 使用指针时,必须规定指针移动的范围 #include <iostream> using namespace std; int main(){ ...

  5. [C++]高效C/C ++编程tips

    Effective C++ 视C++ 为一个语言联邦(C.Object-Oriented C++.Template C++.STL) 宁可以编译器替换预处理器(尽量以const.enum.inline ...

  6. Python中类的变量,一个下划线与两个下划线的区别

    形似       功能 __xx 这是私有变量, 只有内部可以访问,外部不可以访问.但是也不是一定不可以访问,只要以 _类名__xx样式就可以访问 .但最好不要这样做,养成良好编程习惯 _x 这是实例 ...

  7. 简单的sdn防火墙

    github仓库 演示视频 本次实验建立的拓扑 使用到的 pox 指令介绍,参考pox控制器学习笔记 1. forwarding.l2_learning 使OpenFlow交换机充当L2学习交换机的一 ...

  8. js字符串首字母大写的不同写法

    写法一: let name = 'hello' name.charAt(0).toUpperCase() + name.slice(1) 写法二: let name = 'hello' name.sl ...

  9. JAVA自定义连接池原理设计(一)

    一,概述 本人认为在开发过程中,需要挑战更高的阶段和更优的代码,虽然在真正开发工作中,代码质量和按时交付项目功能相比总是无足轻重.但是个人认为开发是一条任重而道远的路.现在本人在网上找到一个自定义连接 ...

  10. LR12解决不能打开webTours服务问题

    启动the webtours apache server时提示:设置使用服务器IP地址相关信息. 解决办法: 找到LR安装目录,如:D:\LoadRunner\WebTours\conf 找到http ...