void lock();

Acquires the lock.

Acquires the lock if it is not held by another thread and returns immediately, setting the lock hold count to one.

If the current thread already holds the lock then the hold count is incremented by one and the method returns immediately.

If the lock is held by another thread then the current thread becomes disabled for thread scheduling purposes and lies dormant until the lock has been acquired, at which time the lock hold count is set to one.

在等待获取锁的过程中休眠并禁止一切线程调度

void lockInterruptibly() throws InterruptedException

Acquires the lock unless the current thread is interrupted.

Acquires the lock if it is not held by another thread and returns immediately, setting the lock hold count to one.

If the current thread already holds this lock then the hold count is incremented by one and the method returns immediately.

If the lock is held by another thread then the current thread becomes disabled for thread scheduling purposes and lies dormant until one of two things happens:

The lock is acquired by the current thread; or

Some other thread interrupts the current thread.

If the lock is acquired by the current thread then the lock hold count is set to one.

If the current thread:

has its interrupted status set on entry to this method; or

is interrupted while acquiring the lock,

then InterruptedException is thrown and the current thread's interrupted status is cleared.

In this implementation, as this method is an explicit interruption point, preference is given to responding to the interrupt over normal or reentrant acquisition of the lock.

Throws:

InterruptedException – if the current thread is interrupted

在等待获取锁的过程中可被中断

boolean tryLock()

Acquires the lock only if it is not held by another thread at the time of invocation.

Acquires the lock if it is not held by another thread and returns immediately with the value true, setting the lock hold count to one. Even when this lock has been set to use a fair ordering policy, a call to tryLock() will immediately acquire the lock if it is available, whether or not other threads are currently waiting for the lock. This "barging" behavior can be useful in certain circumstances, even though it breaks fairness. If you want to honor the fairness setting for this lock, then use tryLock(0, TimeUnit.SECONDS) which is almost equivalent (it also detects interruption).

If the current thread already holds this lock then the hold count is incremented by one and the method returns true.

If the lock is held by another thread then this method will return immediately with the value false.

Returns:

true if the lock was free and was acquired by the current thread, or the lock was already held by the current thread; and false otherwise

获取到锁并返回true;获取不到并返回false

boolean tryLock(long timeout, TimeUnit unit)

Acquires the lock if it is not held by another thread within the given waiting time and the current thread has not been interrupted.

Acquires the lock if it is not held by another thread and returns immediately with the value true, setting the lock hold count to one. If this lock has been set to use a fair ordering policy then an available lock will not be acquired if any other threads are waiting for the lock. This is in contrast to the tryLock() method. If you want a timed tryLock that does permit barging on a fair lock then combine the timed and un-timed forms together:

if (lock.tryLock() ||

lock.tryLock(timeout, unit)) {

...

}

If the current thread already holds this lock then the hold count is incremented by one and the method returns true.

If the lock is held by another thread then the current thread becomes disabled for thread scheduling purposes and lies dormant until one of three things happens:

The lock is acquired by the current thread; or

Some other thread interrupts the current thread; or

The specified waiting time elapses

If the lock is acquired then the value true is returned and the lock hold count is set to one.

If the current thread:

has its interrupted status set on entry to this method; or

is interrupted while acquiring the lock,

then InterruptedException is thrown and the current thread's interrupted status is cleared.

If the specified waiting time elapses then the value false is returned. If the time is less than or equal to zero, the method will not wait at all.

In this implementation, as this method is an explicit interruption point, preference is given to responding to the interrupt over normal or reentrant acquisition of the lock, and over reporting the elapse of the waiting time.

Params:

timeout – the time to wait for the lock

unit – the time unit of the timeout argument

Returns:

true if the lock was free and was acquired by the current thread, or the lock was already held by the current thread; and false if the waiting time elapsed before the lock could be acquired

Throws:

InterruptedException – if the current thread is interrupted

NullPointerException – if the time unit is null

在指定时间内等待获取锁;过程中可被中断

假如线程A和线程B使用同一个锁LOCK,此时线程A首先获取到锁LOCK.lock(),并且始终持有不释放。如果此时B要去获取锁,有四种方式:

  • LOCK.lock(): 此方式会始终处于等待中,即使调用B.interrupt()也不能中断,除非线程A调用LOCK.unlock()释放锁。

  • LOCK.lockInterruptibly(): 此方式会等待,但当调用B.interrupt()会被中断等待,并抛出InterruptedException异常,否则会与lock()一样始终处于等待中,直到线程A释放锁。

  • LOCK.tryLock(): 该处不会等待,获取不到锁并直接返回false,去执行下面的逻辑。

  • LOCK.tryLock(10, TimeUnit.SECONDS):该处会在10秒时间内处于等待中,但当调用B.interrupt()会被中断等待,并抛出InterruptedException。10秒时间内如果线程A释放锁,会获取到锁并返回true,否则10秒过后会获取不到锁并返回false,去执行下面的逻辑。

ReentrantLock可重入锁lock,tryLock的区别的更多相关文章

  1. ReenTrantLock可重入锁和synchronized的区别

    ReenTrantLock可重入锁和synchronized的区别 可重入性: 从名字上理解,ReenTrantLock的字面意思就是再进入的锁,其实synchronized关键字所使用的锁也是可重入 ...

  2. JUC 一 ReentrantLock 可重入锁

    java.util.concurrent.locks ReentrantLock即可重入锁,实现了Lock和Serializable接口 ReentrantLock和synchronized都是可重入 ...

  3. ReenTrantLock可重入锁(和synchronized的区别)总结

    ReenTrantLock可重入锁(和synchronized的区别)总结 可重入性: 从名字上理解,ReenTrantLock的字面意思就是再进入的锁,其实synchronized关键字所使用的锁也 ...

  4. ReentrantLock可重入锁的理解和源码简单分析

    import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.ReentrantLock; /** * @author ...

  5. java ReentrantLock可重入锁功能

    1.可重入锁是可以中断的,如果发生了死锁,可以中断程序 //如下程序出现死锁,不去kill jvm无法解决死锁 public class Uninterruptible { public static ...

  6. ReentrantLock——可重入锁的实现原理

    一. 概述 本文首先介绍Lock接口.ReentrantLock的类层次结构以及锁功能模板类AbstractQueuedSynchronizer的简单原理,然后通过分析ReentrantLock的lo ...

  7. ReentrantLock可重入锁——源码详解

    开始这篇博客之前,博主默认大家都是看过AQS源码的~什么居然没看过猛戳下方 全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(一)AQS基础 全网最详细的Abstra ...

  8. 40 多线程(十二)——ReentrantLock 可重入锁

    我们使用的synchronized加的锁是可以延续使用的,如下: public void test() { //第一次获得锁 synchronized(this) { while(true) { // ...

  9. ReentrantLock可重入锁、公平锁非公平锁区别与实现原理

    ReentrantLock是lock接口的一个实现类,里面实现了可重入锁和公平锁非公平锁 ReentrantLock公平锁和不公平锁实现原理 公平锁会获取锁时会判断阻塞队列里是否有线程再等待,若有获取 ...

随机推荐

  1. C++11运算符重载详解与向量类重载实例(<<,>>,+,-,*等)

    1. C++运算符重载介绍 C ++ 中预定义的运算符的操作对象只能是基本数据类型.但实际上,对于许多用户自定义类型(例如类),也需要类似的运算操作.这时就必须在C ++ 中重新定义这些运算符,赋予已 ...

  2. ESP32-OTA升级

    基于ESP-IDF4.1 1 #include <string.h> 2 #include "freertos/FreeRTOS.h" 3 #include " ...

  3. C语言:已知三角形三边长求面积

    //已知三角形三边长求面积 #include <stdio.h> #include <math.h> int main() { float a,b,c,p,s; int x=0 ...

  4. 以初学者的角度理解:SQL实现关系除法

    以初学者的角度理解:SQL实现关系除法 相信各位在学习SQL的时候,由于没有一家SQL语言提供除法命令而只能自己写一个.而网上大多就是四步骤加一个模板: select distinct A.X fro ...

  5. CF833B-线段树优化DP

    CF833B-线段树优化DP 题意 将一个长为\(n\)的序列分成\(k\)段,每段贡献为其中不同数字的个数,求最大贡献和. 思路 此处感谢@gxy001 聚铑的精彩讲解 先考虑暴力DP,可以想到一个 ...

  6. java内存模型——重排序

    线程安全问题概括来说表现为三个方面:原子性,可见性和有序性. 在多核处理器的环境下:编译器可能改变两个操作的先后顺序:处理器可能不是完全依照程序的目标代码所指定的顺序执行命令:一个处理器执行的多个操作 ...

  7. [考试总结]noip模拟26

    首先看到这样中二的题目心头一震.... 然而发现又是没有部分分数的一天. 然而正解不会打.... 那还是得要打暴力. 但是这套题目有两个题目只有一个参数. 所以... (滑稽).jpg 然后我就成功用 ...

  8. python 装饰函数2

    #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue May 5 21:40:49 2020 ...

  9. Java类的生命周期浅析

    类的生命周期?对象的生命周期?Spring bean 的生命周期?很多同学可能在学习java基础知识之初,很容易把这几个搞混.本文先来说说Java类的生命周期. 目录 知识前提 类的生命周期 加载(L ...

  10. 模式识别课程大作业 Shopee 商品图像检索

    大作业项目简介 在如今的信息科技时代, 带有拍照功能的移动设备如手机.相机等得到了极大的普及和流行, 各种各样的图片和视频可以随时随地获得, 并借助互联网快速传播, 这种趋势使得网络上的数字图片和视频 ...