word2Vec 是实现从原始语料中学习字词空间向量的预测模型

使用word2Vec的skip_Gram模型

import collections
import math
import os
import random
import zipfile
import numpy as np
import urllib.request
import tensorflow as tf
url = 'http://mattmahoney.net/dc/'
def maybe_download(filename,expected_bytes):
"下载数据的压缩文件并核对文件尺寸大小"
if not os.path.exists(filename):
filename ,_=urllib.request.urlretrieve(url+filename,filename)
statinfo = os.stat(filename)
if statinfo.st_size == expected_bytes:
print('Found and verified',filename)
else:
print(statinfo.st_size)
raise Exception(
'Failed to verify'+filename +'.can you get to it with a browser?'
)
return filename
filename = maybe_download('text8.zip',31344016)
def read_data(filename):
with zipfile.ZipFile(filename) as f:
"将数据转化为单词列表"
data = tf.compat.as_str(f.read(f.namelist()[0])).split( )
return data words = read_data(filename)
print('Data size',len(words))
"创建词汇表"
vocabulary_size =50000
def build_dataset(words):
count = [['UNK',-1]]
"统计单词列表中单词的频数,把前50000的放入字典"
count.extend(collections.Counter(words).most_common(vocabulary_size-1))
dictionary = dict()
for word,_ in count:
dictionary[word] = len(dictionary)
data = list()
unk_count = 0
"""
不在前50000里面 编码为0
"""
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0
unk_count +=1
data.append(index)
count[0][1] = unk_count
reverse_dictionary = dict(zip(dictionary.values(),dictionary.keys()))
return data,count,dictionary,reverse_dictionary
data, count,dictionary,reverse_dictionary = build_dataset(words)
del words
print('Most common words (+UNK)',count[:5])
print('Sample data',data[:10],[reverse_dictionary[i] for i in data[:10]])
data_index = 0
def generate_batch(batch_size,num_skips,skip_window):
""" :param batch_size:
:param num_skips: 对每个单词生成多少样本 不大于2*skip_window
:param skip_window: 滑动窗口步长
:return: batch
labels
"""
global data_index
assert batch_size %num_skips==0
assert num_skips <=2*skip_window
batch = np.ndarray(shape=(batch_size),dtype=np.int32)
labels = np.ndarray(shape=(batch_size,1),dtype=np.int32)
span = 2*skip_window+1
buffer = collections.deque(maxlen=span)
for _ in range(span):
buffer.append(data[data_index])
data_index = (data_index+1)%len(data)
for i in range(batch_size//num_skips): # 一块batch里面有包含的目标单词数
target = skip_window
target_to_avoid = [skip_window] #需要避免的单词列表
for j in range(num_skips):
# 找到可以使用的语境词语
while target in target_to_avoid:
target = random.randint(0,span-1)
target_to_avoid.append(target)
batch[i*num_skips+j]=buffer[skip_window] #目标词汇
labels[i*num_skips+j,0] = buffer[target] #语境词汇
"buffer此时已经填满,后续的数据会覆盖掉前面的数据"
buffer.append(data[data_index])
data_index=(data_index+1)%len(data)
return batch,labels
batch,labels = generate_batch(batch_size=8,num_skips=2,skip_window=1)
for i in range(8):
print(batch[i],reverse_dictionary[batch[i]],'->',labels[i,0],reverse_dictionary[labels[i,0]])
batch_size = 128
embedding_size = 128 #单词转化为稠密词向量的维度
skip_window = 1
num_skips = 2
valid_size = 16 #验证单词数
valid_window = 100 #验证单词数从频数最高的100个单词里面抽取
valid_examples = np.random.choice(valid_window,valid_size,replace=False) #负样本的噪声单词数
num_sampled =64
graph = tf.Graph()
with graph.as_default():
train_inputs = tf.placeholder(tf.int32,shape=[batch_size])
train_labels = tf.placeholder(tf.int32,shape=[batch_size,1])
valid_dataset = tf.constant(valid_examples,dtype = tf.int32)
with tf.device('/cpu:0'):
embeddings = tf.Variable(
tf.random_uniform([vocabulary_size,embedding_size],-1.0,1.0)
)
embed = tf.nn.embedding_lookup(embeddings,train_inputs) #查找输入对应的向量
nce_weights = tf.Variable(
tf.truncated_normal([vocabulary_size,embedding_size],
stddev=1.0/math.sqrt(embedding_size))
)
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
loss = tf.reduce_mean(tf.nn.nce_loss(
weights=nce_weights,
biases= nce_biases,
labels=train_labels,
inputs=embed,
num_sampled=num_sampled,
num_classes=vocabulary_size
))
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings),1,keep_dims = True))
normalized_embeddings=embeddings/norm
valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings,valid_dataset)
similarity = tf.matmul(valid_embeddings,normalized_embeddings,transpose_b=True)
init = tf.global_variables_initializer()
num_step =100001
with tf.Session(graph=graph)as session:
init.run()
print('Initialized')
average_loss = 0
for step in range(num_step):
batch_inputs,batch_labels=generate_batch(batch_size,num_skips,skip_window)
feed_dict={train_inputs:batch_inputs,train_labels:batch_labels}
_,loss_val = session.run([optimizer,loss],feed_dict=feed_dict)
average_loss+=loss_val
if step%200==0:
if step >0:
average_loss /=2000
print('Average loss at step',step,":",average_loss)
average_loss=0
"把验证单词的相关单词与所有单词计算相关性,并输出前8个相似性高的单词"
if step%10000==0:
sim = similarity.eval()
for i in range(valid_size):
valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8
nearest = (-sim[i,:]).argsort()[1:top_k+1]
log_str = "Nearest to %s:"%valid_word
for k in range(top_k):
close_word = reverse_dictionary[nearest[k]]
log_str= "%s %s,"%(log_str,close_word)
print(log_str)
final_embeddings = normalized_embeddings.eval()

  使用url下载数据集会出现数据集下载不完整,推荐手动下载数据集 网址为http://mattmahoney.net/dc/text8.zip

结果如下

tesonflow实现word2Vec的更多相关文章

  1. word2vec 中的数学原理详解

    word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了很多人的关注.由于 word2vec 的作者 Tomas Miko ...

  2. Java豆瓣电影爬虫——使用Word2Vec分析电影短评数据

    在上篇实现了电影详情和短评数据的抓取.到目前为止,已经抓了2000多部电影电视以及20000多的短评数据. 数据本身没有规律和价值,需要通过分析提炼成知识才有意义.抱着试试玩的想法,准备做一个有关情感 ...

  3. word2vec参数调整 及lda调参

     一.word2vec调参   ./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -neg ...

  4. [Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型

    深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? ...

  5. Word2Vec 使用总结

    word2vec 是google 推出的做词嵌入(word embedding)的开源工具. 简单的说,它在给定的语料库上训练一个模型,然后会输出所有出现在语料库上的单词的向量表示,这个向量称为&qu ...

  6. Word2vec多线程(tensorflow)

    workers = [] for _ in xrange(opts.concurrent_steps): t = threading.Thread(target=self._train_thread_ ...

  7. Word2vec 模型载入(tensorflow)

    opts = Options() with tf.Graph().as_default(), tf.Session() as session: model = Word2Vec(opts, sessi ...

  8. Forward-backward梯度求导(tensorflow word2vec实例)

    考虑不可分的例子         通过使用basis functions 使得不可分的线性模型变成可分的非线性模型 最常用的就是写出一个目标函数 并且使用梯度下降法 来计算     梯度的下降法的梯度 ...

  9. Tensorflow word2vec编译运行

    Word2vec 更完整版本(非demo)的代码在 tensorflow/models/embedding/     首先需要安装bazel 来进行编译 bazel可以下载最新的binary安装文件, ...

随机推荐

  1. ubuntu下tftp的安装、配置、使用

    1. 安装 sudo apt-get install tftp-hpa tftpd-hpa -y 2. 配置 sudo vi /etc/default/tftpd-hpa #/etc/default/ ...

  2. VC串口通讯,WriteFile或ReadFile没有任何返回??

    别犯低级错误,一定要设置读写超时!!!

  3. MySQL库的相关操作

    再熟悉一下Mysql库.表.记录的基本操作. 库 增 create database userinfo1 charset utf8; 查 show databases; show create dat ...

  4. UI5-技术篇-Implementing Expand Entity/Entity Set

    转载:https://blogs.sap.com/2014/07/18/implementing-expand-entityentity-set/ Requirement Considering a ...

  5. BASIS小问题汇总1

    try to start SAP system but failed 2019-04-04 Symptom: when i tried to start SAP system, using the c ...

  6. php中的特殊标签

    参考:https://www.freebuf.com/column/212586.html 今天看到这篇文章讲到了ctf中的一些关于php标签的小姿势,我虽然不打ctf,但是平常做php的代码审计也经 ...

  7. iOS CALayer总结——图层几何

    最近看了一下关于图层和动画的内容,所以写了一份总结,算是对这些内容的汇总吧,都是一些简单的基础知识,不知道大家都了不了解. 除了和用户的交互之外,图层的很多属性和视图基本上都是一样的,今天就先从CAL ...

  8. 第二篇:Python基本知识

    这一篇我们简单的介绍一下Python学习的基本知识-->Python文件是如何运行.Python文件打开通常会有两行注释,那么这两行注释是什么:上篇提到的字节码,这些字节码都存储在哪?即pyc文 ...

  9. 【OF框架】搭建标准工作环境

    前言 统一工作环境,统一工具集,是沟通效率的基础.如同语言一样,使用不同语言的人,需要花更多的精力去理解语言,然后才是理解语言的内容,而使用相同语言的人,对话过程直接进入到内容.对于语言不统一增加的效 ...

  10. opencv 图片识别

    # -*- coding: utf-8 -*-"""Created on Fri Nov 22 21:35:12 2019 @author: Administrator& ...