题目链接:https://vjudge.net/problem/HDU-1007

题意:给定n个点,求平面距离最小点对的距离除2。

思路:分治求最小点对,对区间[l,r]递归求[l,mid]和[mid+1,r]的最小点对,取两者中的小者设为d。然后处理一个点在左区间,一个点在右区间的情况。一个点P在左区间,如果使它与右区间Q一个点距离小于d的话,那么P到mid的距离一定小于的,Q也是,且P和Q的纵坐标之差小于d。可以证明这样的Q点最多6个。那么我们把符合到mid距离小于d的点按y排序后,遍历一遍更新d即可。

AC代码:

#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<algorithm>
using namespace std; const int maxn=1e5+;
int n,id[maxn],cnt;
const double inf=1e30;
struct node{
double x,y;
}pt[maxn]; bool operator < (const node& a,const node& b){
if(a.x==b.x) return a.y<b.y;
return a.x<b.x;
} bool cmp(int a,int b){
return pt[a].y<pt[b].y;
} double dist(const node& a,const node& b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} double fenzhi(int l,int r){
double d=inf;
if(l==r) return d;
if(l+==r) return dist(pt[l],pt[r]);
int mid=(l+r)>>;
d=min(fenzhi(l,mid),fenzhi(mid+,r));
cnt=;
int t1,t2,l1=l,r1=mid,mid1;
while(l1<=r1){
mid1=(l1+r1)>>;
if(pt[mid].x-pt[mid1].x<d) r1=mid1-;
else l1=mid1+;
}
t1=l1;
l1=mid+,r1=r;
while(l1<=r1){
mid1=(l1+r1)>>;
if(pt[mid1].x-pt[mid].x<d) l1=mid1+;
else r1=mid1-;
}
t2=r1;
for(int i=t1;i<=t2;++i)
id[++cnt]=i;
sort(id+,id+cnt+,cmp);
for(int i=;i<cnt;++i)
for(int j=i+;j<=cnt&&(pt[id[j]].y-pt[id[i]].y)<d;++j)
d=min(d,dist(pt[id[i]],pt[id[j]]));
return d;
} int main(){
while(scanf("%d",&n),n){
for(int i=;i<=n;++i)
scanf("%lf%lf",&pt[i].x,&pt[i].y);
sort(pt+,pt+n+);
printf("%.2f\n",fenzhi(,n)/);
}
return ;
}

(模板)hdoj1007(分治求平面最小点对)的更多相关文章

  1. poj3714 Raid(分治求平面最近点对)

    题目链接:https://vjudge.net/problem/POJ-3714 题意:给定两个点集,求最短距离. 思路:在平面最近点对基础上加了个条件,我么不访用f做标记,集合1的f为1,集合2的f ...

  2. POJ 3714 分治/求平面最近点对

    第一次见这种问题直接懵圈...没想到分治法这么强大,借鉴了lyd的代码: 代码如下 #include<cstdio> #include<algorithm> #include& ...

  3. TZOJ 1689 Building A New Barn(求平面上有几个其它点求到n个点的曼哈顿距离最小)

    描述 After scrimping and saving for years, Farmer John has decided to build a new barn. He wants the b ...

  4. [ZJOI2011]最小割 & [CQOI2016]不同的最小割 分治求最小割

    题面: [ZJOI2011]最小割 [CQOI2016]不同的最小割 题解: 其实这两道是同一道题.... 最小割是用的dinic,不同的最小割是用的isap 其实都是分治求最小割 简单讲讲思路吧 就 ...

  5. 平面最小割—BZOJ 1001

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 很有意思的题目,本来想直接上网络流,但是发现点太多,边太多2333. 直接网络流无法 ...

  6. 洛谷 P4721 【模板】分治 FFT 解题报告

    P4721 [模板]分治 FFT 题目背景 也可用多项式求逆解决. 题目描述 给定长度为 \(n−1\) 的数组 \(g[1],g[2],\dots,g[n-1]\),求 \(f[0],f[1],\d ...

  7. luoguP4721 【模板】分治 FFT

    P4721 [模板]分治 FFT 链接 luogu 题目描述 给定长度为 \(n-1\) 的数组 \(g[1],g[2],..,g[n-1]\),求 \(f[0],f[1],..,f[n-1]\),其 ...

  8. LG4721 【模板】分治 FFT

    P4721 [模板]分治 FFT 题目背景 也可用多项式求逆解决. 题目描述 给定长度为 $n-1$ 的数组 $g[1],g[2],..,g[n-1]$,求 $f[0],f[1],..,f[n-1]$ ...

  9. Educational Codeforces Round 41 967 E. Tufurama (CDQ分治 求 二维点数)

    Educational Codeforces Round 41 (Rated for Div. 2) E. Tufurama (CDQ分治 求 二维点数) time limit per test 2 ...

随机推荐

  1. MySql大小写配置

    新安装mysql5.7版本后,linux环境下默认是大小写敏感的.可以在客户端执行以下命令: SHOW VARIABLES LIKE '%case%' 可以看到 lower_case_table_na ...

  2. hdu 5514 Frogs 容斥思想+gcd 银牌题

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  3. Ubuntu16.04搭建NetCore2.2运行环境

    选择安装的工具 .Net Core Sdk Nginx Supervisor Mysql 一  安装NetCore SDK 参考微软官方文档 https://docs.microsoft.com/zh ...

  4. 内置对象 Date

    1.内置对象     a)语言自带的对象     b)提供了常用的,基本的功能     Date 1.定义的方法          a) 获取当前时间 var date1=new Date(); co ...

  5. 修改checkbox样式-1

    说明 使用伪类来对复选框进行样式修改.以下以最简单的一个样式修改为实例进行说明. 步骤介绍: 将一个label与复选框进行绑定,将两者放在同一个div下 调整 label的外部样式使其作为复选框的外形 ...

  6. golang 文件导入数据追加sheet

    func ReadXlsx(c []CmdbTest, SheetName string) error {     //打开文件,如果文件不存在创建,存在就打开     path := ". ...

  7. vue 复制内容到粘贴板

    首先是npm安装依赖包:npm install clipboard --save 导入组件:import Clipboard from "clipboard"; html如图: c ...

  8. oracle口令文件在windows和linux系统下的命名和位置

      分类: Oracle 1.windows系统下 oracle口令文件在:$ORACLE_HOME/database目录下: 命名规则为:PWD$SID.ora   2.linux系统下 oracl ...

  9. HearthBuddy 突袭 rush

    https://hearthstone.gamepedia.com/Rush Rush is an ability allowing a minion to attack other minions ...

  10. 使用 PM2 将 Node.js 的集群变得更加容易

    介绍 众所周知,Node.js运行在Chrome的JavaScript运行时平台上,我们把该平台优雅地称之为V8引擎.不论是V8引擎,还是之后的Node.js,都是以单线程的方式运行的,因此,在多核心 ...