【网络流24题】最长k可重线段集(费用流)
【网络流24题】最长k可重线段集(费用流)
题面
题解
这道题和最长k可重区间集没有区别
只不过费用额外计算一下
但是,还是有一点要注意的地方
这里可以是一条垂直的直线
所以,首先把所有的x轴全部乘2
如果两个相等就把右端点+1
否则左端点+1
这样就可以解决垂直于x轴的问题了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 50000
#define MAXL 5000000
#define INF 1000000000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line
{
int v,next,w,fy;
}e[MAXL];
bool vis[MAX];
int h[MAX],cnt=2;
inline void Add(int u,int v,int w,int fy)
{
e[cnt]=(Line){v,h[u],w,fy};h[u]=cnt++;
e[cnt]=(Line){u,h[v],0,-fy};h[v]=cnt++;
}
int pe[MAX],pr[MAX],dis[MAX];
int S,T,Cost,n,m,Flow,opt=-1;
bool SPFA()
{
memset(dis,63,sizeof(dis));
queue<int> Q;
Q.push(S);dis[S]=0;
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(e[i].w&&dis[v]>dis[u]+e[i].fy)
{
dis[v]=dis[u]+e[i].fy;
pe[v]=i;pr[v]=u;
if(!vis[v])vis[v]=true,Q.push(v);
}
}
vis[u]=false;
}
if(dis[T]>=INF)return false;
int flow=INF;
for(int i=T;i!=S;i=pr[i])flow=min(flow,e[pe[i]].w);
for(int i=T;i!=S;i=pr[i])e[pe[i]].w-=flow,e[pe[i]^1].w+=flow;
Cost+=opt*flow*dis[T];
Flow+=flow;
return true;
}
int X1[MAX],X2[MAX],SS[MAX],tot,K,W[MAX];
int main()
{
n=read();K=read();
for(int i=1;i<=n;++i)
{
int x1=read(),y1=read(),x2=read(),y2=read();
int ww=sqrt(1ll*(x1-x2)*(x1-x2)+1ll*(y1-y2)*(y1-y2));
if(x1>x2)swap(x1,x2);
x1*=2;x2*=2;if(x1==x2)x2++;else x1++;
SS[++tot]=x1;SS[++tot]=x2;
X1[i]=x1,X2[i]=x2;W[i]=ww;
}
sort(&SS[1],&SS[tot+1]);
tot=unique(&SS[1],&SS[tot+1])-SS-1;
S=0;T=tot+1;
for(int i=0;i<=tot;++i)
Add(i,i+1,K,0);
for(int i=1;i<=n;++i)
{
int u=lower_bound(&SS[1],&SS[tot+1],X1[i])-SS;
int v=lower_bound(&SS[1],&SS[tot+1],X2[i])-SS;
Add(u,v,1,-W[i]);
}
while(SPFA());
printf("%d\n",Cost);
return 0;
}
【网络流24题】最长k可重线段集(费用流)的更多相关文章
- 网络流24题-最长k可重线段集问题
最长k可重线段集问题 时空限制1000ms / 128MB 题目描述 给定平面 x−O−y 上 n 个开线段组成的集合 I,和一个正整数 k .试设计一个算法,从开线段集合 I 中选取出开线段集合 S ...
- [网络流24题]最长k可重线段集[题解]
最长 \(k\) 可重线段集 题目大意 给定平面 \(x-O-y\) 上 \(n\) 个开线段组成的集合 \(I\) ,和一个正整数 \(k\) .试设计一个算法,从开线段集合 \(I\) 中选取开线 ...
- [网络流24题] 最长k可重线段集问题 (费用流)
洛谷传送门 LOJ传送门 最长k可重区间集问题的加强版 大体思路都一样的,不再赘述,但有一些细节需要注意 首先,坐标有负数,而且需要开$longlong$算距离 但下面才是重点: 我们把问题放到了二维 ...
- COGS743. [网络流24题] 最长k可重区间集
743. [网络流24题] 最长k可重区间集 ★★★ 输入文件:interv.in 输出文件:interv.out 简单对比时间限制:1 s 内存限制:128 MB «问题描述: «编 ...
- [网络流24题]最长k可重区间集[题解]
最长 \(k\) 可重区间集 题目大意 给定实心直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取开区间集 ...
- [网络流24题] 最长k可重区间集
https://www.luogu.org/problemnew/show/3358 以区间(1,5),(2,6),(7,8)为例 建模方法一: 建模方法二: 离散化区间端点 相当于找k条费用最大的不 ...
- [网络流24题] 最长K可重区间集问题
题目链接:戳我 当时刷24题的时候偷了懒,没有写完,结果落下这道题没有写qwq结果今天考试T3中就有一部分要用到这个思想,蒟蒻我硬是没有想到网络流呜呜呜 最大费用流. 就是我们考虑将问题转化一下,转化 ...
- [网络流24题] 最长k可重区间集问题 (费用流)
洛谷传送门 LOJ传送门 很巧妙的建图啊...刚了$1h$也没想出来,最后看的题解 发现这道题并不类似于我们平时做的网络流题,它是在序列上的,且很难建出来二分图的形. 那就让它在序列上待着吧= = 对 ...
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
随机推荐
- LeetCode - 657. Judge Route Circle
Initially, there is a Robot at position (0, 0). Given a sequence of its moves, judge if this robot m ...
- [Python Study Notes]Socket模拟ssh执行cmd并记录遇到的问题
服务器端: 流程: 1.创建servert实例 2.绑定地址和端口 3.开始监听 4.创建客户端连接实例 5.等待客户端的消息 6.......... # The_author = 'liu66' # ...
- NSIS 设置系统变量
定义 ; include for some of the windows messages defines !include "winmessages.nsh" ; HKLM (a ...
- maven配置全局的jdk和配置局部的jdk
配置全局的jdk需要修改maven的setting.xml文件 <profile> <id>jdk17</id> <activation> <ac ...
- linux磁盘及分区详解
1.Linux 分区简介 1.1 主分区 vs 扩展分区 硬盘分区表中最多能存储四个分区,但我们实际使用时一般只分为两个分区,一个是主分区(Primary Partion)一个是扩展分区(extend ...
- 高性能javascript笔记
----------------------------------------------------------- 第一章 加载和执行 ------------------------------ ...
- C#中引用变量是否应该加ref?
看如下代码: void Test(T t); void Test(ref T t); 当T是值类型的时候,很好判断,第一种并不能改变方法外变量的值,需要第二种方法才可以.通过查看IL代码,可以看到 ...
- OSI网络模型
OSI中的层 功能 TCP/IP协议族 应用层 文件传输,电子邮件,文件服务,虚拟终端 TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet 表示层 数 ...
- PHP判断是手机端还是PC端
function check_wap() { if (isset($_SERVER['HTTP_VIA'])) return true; if (isset($_SERVER['HTTP_X_NOKI ...
- spring cron 定时任务
文章首发于个人博客:https://yeyouluo.github.io 0 预备知识:cron表达式 见 <5 参考>一节. 1 环境 eclipse mars2 + Maven3.3. ...