题目描述

《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。

同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n<=100000,如何求出{1, 2,..., n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就 交给你了。

输入输出格式

输入格式:

只有一行,其中有一个正整数 n,30%的数据满足 n<=20。

输出格式:

仅包含一个正整数,表示{1, 2,..., n}有多少个满足上述约束条件 的子集。

输入输出样例

输入样例#1:
复制
输出样例#1: 复制
每个k(不含2,3的因数)可以单独考虑,答案是所有k方案的积
即考虑$k*2^i*3^j<=n$的方案
构造一个矩阵:
 k   3k  9k  27k
2k  6k  18k  54k
4k 12k  36k 108k
令f[i][S]表示当前选到2^i,行状态为S
S第j位为1表示选了2^i*3^j
首先根据题意,S相邻2位不能为1
然后转移时前面的状态S'
要满足与S&S'=0
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int n,Log2[],Log3[],pw2[],pw3[];
int ans,Mod=1e9+,f[][],s[],cnt,p,q,sum;
int main()
{int i,j,k,l;
cin>>n;
Log2[]=;
for (i=;i<=n;i++)
Log2[i]=Log2[i/]+;
Log3[]=;
for (i=;i<=n;i++)
Log3[i]=Log3[i/]+;
pw2[]=;
for (i=;i<=;i++)
pw2[i]=pw2[i-]*;
pw3[]=;
for (i=;i<=;i++)
pw3[i]=pw3[i-]*;
for (i=;i<pw2[];i++)
{
s[i]=;
for (j=;j<=;j++)
if ((i&pw2[j])&&(i&pw2[j+])) s[i]=;
}
ans=;
for (i=;i<=n;i++)
if (i%&&i%)
{
k=;
q=Log3[n/i]+;
for (j=;j<pw2[q];j++)
f[][j]=s[j];
while (i*pw2[k]<=n)
{
p=Log3[n/(i*pw2[k])]+;
for (j=;j<pw2[p];j++)
if (s[j])
{
f[k][j]=;
for (l=;l<pw2[q];l++)
if (s[l]&&((j&l)==))
{
f[k][j]=(f[k][j]+f[k-][l])%Mod;
}
}
else f[k][j]=;
q=p;
k++;
}
sum=;
for (j=;j<pw2[q];j++)
sum=(sum+f[k-][j])%Mod;
ans=(1ll*ans*sum)%Mod;
}
cout<<ans;
}

[HNOI2012]集合选数的更多相关文章

  1. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  2. BZOJ_2734_[HNOI2012]集合选数_构造+状压DP

    BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...

  3. 2734: [HNOI2012]集合选数

    2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...

  4. [HNOI2012]集合选数 --- 状压DP

    [HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...

  5. 2734: [HNOI2012]集合选数 - BZOJ

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

  6. bzoj 2734: [HNOI2012]集合选数

    题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...

  7. 【刷题】BZOJ 2734 [HNOI2012]集合选数

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

  8. BZOJ 2734: [HNOI2012]集合选数 [DP 状压 转化]

    传送门 题意:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足若 x 在该子集中,则 2x 和 3x 不能在该子集中的子集的个数(只需输出对 1,000,000,001 ...

  9. [HNOI2012]集合选数(状压DP+构造)

    题目要求若出现x,则不能出现2x,3x 所以我们考虑构造一个矩阵 \(1\ 2\ 4 \ 8--\) \(3\ 6\ 12\ 24--\) \(9\ 18\ 36--\) \(--\) 不难发现,对于 ...

随机推荐

  1. Alpha冲刺No.9

    一.站立式会议 继续解决真实手机中的问题,如果不能解决,请教助教学姐 数据库备忘录的获取和上传 细化界面设计 二.项目实际进展 用一种奇怪的方式解决了真实手机中的问题,在总结里细说. 完成数据库备忘录 ...

  2. C语言博客作业--函数 陈张鑫

    一.PTA实验作业 题目1:6-3 使用函数判断完全平方数 1. 本题PTA提交列表 2. 设计思路 1.定义int IsSquare( int n )函数 2.判断(sqrt(n)是否为整数 3., ...

  3. C++之异常捕获和处理

    一.简介   在C++语言中,异常处理包括:throw表达式,try语句块,一套异常类.其中,异常类用于在throw表达式和相关的catch子句之间传递异常的具体信息.exception头文件定义了最 ...

  4. Python处理图片缩略图

    CPU 密集型任务和 IO 密集型任务分别选择多进程multiprocessing.Pool.map 和多线程库multiprocessing.dummy.Pool.map import os imp ...

  5. 怎么去理解JAVA中类与对象的关系

    首先要明确,在现实生活中,每一个物体都有自己的基本特征,专业一点也可以说成是属性有些甚至还有一定的行为.例如 汽车的特征:有车门.有轮胎.颜色各一等等,行为:有行驶,开车门,开车灯,等等.有这些属性和 ...

  6. mysql命令行大全

      1.连接Mysql 格式: mysql -h主机地址 -u用户名 -p用户密码1.连接到本机上的MYSQL.首先打开DOS窗口,然后进入目录mysql\bin,再键入命令mysql -u root ...

  7. Java并发编程实战 之 线程安全性

    1.什么是线程安全性 当多个线程访问某个类时,不管运行时环境采用何种调用方式或者这些线程将如何交替执行,并且在主调代码中不需要任何额外的同步或协同,这个类都能表现出正确的行为,那么就称这个类是线程安全 ...

  8. php函数var_dump() 、print_r()、echo()

    var_dump() 能打印出类型 print_r() 只能打出值 echo() 是正常输出... 需要精确调试的时候用 var_dump(); 一般查看的时候用 print_r() 另外 , ech ...

  9. Nginx原理和配置总结

    一:前言 Nginx是一款优秀的HTTP服务器和反向代理服务器,除却网上说的效率高之类的优点,个人的切身体会是Nginx配置确实简单而且还好理解,和redis差不多,比rabbitmq好理解太多了: ...

  10. SpringBoot入门:Spring Data JPA 和 JPA(理论)

    参考链接: Spring Data JPA - Reference Documentation Spring Data JPA--参考文档 中文版 纯洁的微笑:http://www.ityouknow ...