理自Andrew Ng的machine learning课程。

目录:

  • 梯度下降算法
  • 梯度下降算法的直观展示
  • 线性回归中的梯度下降

前提:

线性回归模型 :$h(\theta_0,\theta_1)=\theta_0+\theta_1x$

损失函数:$J(\theta_0,\theta_1)=\frac{1}{2m} \sum_{i=1}^m (h_\theta(x^(i))-y^(i))^2$

1、梯度下降算法

目的:求解出模型的参数 / estimate the parameters in the hypothesis function

如下图所示,$\theta_0,\theta_1$代表模型的参数,$J(\theta_0,\theta_1)$代表模型的损失函数

目的:从某一点出发,走到最低点。

怎么走:沿着所在点处最陡的方向下降。某一点山坡最陡的方向就是这一点的切线方向,也就是这一点的导数。每一步走多大取决于学习率$\alpha$。

在图中,每一个十字星之间的距离取决与$\alpha$的大小。小的$\alpha$会使两点之间的距离比较小,大的$\alpha$会产生大的步距。每一步走的方向取决于所在点的偏导。不同的起始点会有不同的终点,如上图从A出发最终到达B,而从C出发最终到达D。

梯度下降算法如下:

$\theta_j:=\theta_j-\alpha\frac{\partial}{\partial \theta_j}J(\theta_0,\theta_1)$    repeat util convergence

注意:$\theta_0,\theta_1$在每一步的迭代中都是同步更新的

2、梯度下降算法的直观展示

如下图:此图是一个损失函数的图像

当$\theta_1$在最小值点的右边时,图像的斜率(导数)是正的,学习率$\alpha$也是正的,根据梯度下降算法的公式,更新后的$\theta_1$是往左边方向走了,的确是朝着最小值点去了;

当$\theta_1$在最小值点的左边时,图像的斜率(导数)是负的,学习率$\alpha$是正的,根据梯度下降算法的公式,更新后的$\theta_1$是往右边方向走了,也是朝着最小值点去了;

另外,我们需要调整$\alpha$使的算法可以在一定的时间内收敛。收敛失败或者收敛的非常慢,都说明使用的步长$\alpha$是错误的。

如果使用固定的$\alpha$,算法会收敛吗?

梯度下降算法隐含的一个信息就是,当点越来越接近最小值点的时候,梯度也会越来越小,到达最小值点时,梯度为0;

所以即使不去调整$\alpha$,走的步长也是会越来越短的,算法最终也还是会收敛的,所以没必要每次都调整$\alpha$的大小。

3、线性回归中的梯度下降算法

当把梯度下降算法具体的运用到线性回归上去的时候,算法就可以在偏导部分写的更加具体了:

repear until convergence {

$\qquad \theta_0:=\theta_0-\alpha \frac {1}{m} \sum_{i=1}^m (h_\theta(x_i)-y_i)$

$\qquad \theta_1:=\theta_1-\alpha \frac {1}{m} \sum_{i=1}^m ((h_\theta(x_i)-y_i)x_i)$

}

batch gradient descent

以上:在每一步更新参数时,让所有的训练样本都参与更新的做法,称为batch gradient descent;

注意到:虽然梯度下降算法可能会陷入局部最优的情况,但是在线性回归中不存在这种问题,线性回归只有一个全局最优,没有局部最优,算法最终一定可以找到全局最优点(假设$\alpha$不是特别大)。

线性回归中,J是一个凸二次函数,这样的函数是碗状的(bowl-shaped),没有局部最优,只有一个全局最优。

Gradient Descent的更多相关文章

  1. 梯度下降(Gradient Descent)小结

    在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微 ...

  2. 机器学习基础——梯度下降法(Gradient Descent)

    机器学习基础--梯度下降法(Gradient Descent) 看了coursea的机器学习课,知道了梯度下降法.一开始只是对其做了下简单的了解.随着内容的深入,发现梯度下降法在很多算法中都用的到,除 ...

  3. 线性回归、梯度下降(Linear Regression、Gradient Descent)

    转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: ...

  4. Proximal Gradient Descent for L1 Regularization

    [本文链接:http://www.cnblogs.com/breezedeus/p/3426757.html,转载请注明出处] 假设我们要求解以下的最小化问题:                     ...

  5. FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MINI-BATCH LEARNING. WHAT IS THE DIFFERENCE?

    FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MIN ...

  6. Logistic Regression and Gradient Descent

    Logistic Regression and Gradient Descent Logistic regression is an excellent tool to know for classi ...

  7. 机器学习笔记:Gradient Descent

    机器学习笔记:Gradient Descent http://www.cnblogs.com/uchihaitachi/archive/2012/08/16/2642720.html

  8. (转) An overview of gradient descent optimization algorithms

    An overview of gradient descent optimization algorithms Table of contents: Gradient descent variants ...

  9. (二)深入梯度下降(Gradient Descent)算法

    一直以来都以为自己对一些算法已经理解了,直到最近才发现,梯度下降都理解的不好. 1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 ...

  10. [Machine Learning] 梯度下降(BGD)、随机梯度下降(SGD)、Mini-batch Gradient Descent、带Mini-batch的SGD

    一.回归函数及目标函数 以均方误差作为目标函数(损失函数),目的是使其值最小化,用于优化上式. 二.优化方式(Gradient Descent) 1.最速梯度下降法 也叫批量梯度下降法Batch Gr ...

随机推荐

  1. shell脚本 sed工具

    sed工具概述(流式编辑器)非交互,基于模式匹配过滤及修改文本逐行处理,并将结果输出到屏幕可实现对文本的输出,增,删,改,查等各种操作 sed流控制:!:取反操作,根据定址条件取反n:读下一行,产生隔 ...

  2. 3_使用指针对象(Using Object Pointer)

    类的成员函数有两种调用方式,一种是由对象调用,另一种是由对象指针调用.其中,对象调用的方式为objectName.memberFunctionName(parameters),而对象指针调用的方式为o ...

  3. Android应用Home键后Launcher重复启动问题

    通过系统方式(系统安装器)安装应用,点击"打开"按钮,进入应用主界面,按home键后,点击应用图标进入,应用会出现重新启动.当完全退出应用后,再通过启动图标进入应用,便不会出现重复 ...

  4. PCI9054 学习小结

    PCI的基本协议这里就不介绍了,因为一般的芯片协议都是集成好的,我只需要大体了解就行,不需要做芯片,我感觉就不需要太了解协议. 这里讲解是基于PLX 的9054(9052)芯片为基础的,本人只是入门, ...

  5. ClientToScreen 和ScreenToClient 用法

    ClientToScreen( )是把窗口坐标转换为屏幕坐标 ScreenToClient( )是把屏幕坐标转换为窗口坐标 屏幕坐标是相对于屏幕左上角的,而窗口坐标是相对于窗口用户区左上角的 VC下, ...

  6. linux之x86裁剪移植---字符界面sdl开发入门

    linux下有没有TurboC2.0那样的画点.线.圆的图形函数库,有没有grapihcs.h,或者与之相对应或相似的函数库是什么?有没有DirectX这样的游戏开发库?SDL就是其中之一. SDL( ...

  7. 【php】strtr与str_replace的区别

    strtr(string,from,to): 逐个字符开始替换,以from跟to中长度较较短的一个为准,例如: strtr("aidenliu","ai",&q ...

  8. Caused by: java.lang.ClassNotFoundException: org.hibernate.service.jta.platform.spi.JtaPlatform

    1.错误描述 2014-7-12 22:08:01 org.hibernate.tool.hbm2ddl.SchemaUpdate execute INFO: HHH000232: Schema up ...

  9. DirectShow学习笔记总结

    DirectShow是微软公司在ActiveMovie和Video for Windows的基础上推出的新一代基于COM(Component Object Model)的流媒体处理的开发包,9.0之前 ...

  10. Regex 正则替换指定范围全部字符串

    1.正则替换字符-------------------------------------------------------------------------------------------- ...