题目链接:https://nanti.jisuanke.com/t/38223

题意:有一堆火柴构成了一个加减法式子,你可以把火柴重新组合,要求数字个数和原来一样多,每个数字的位数和对应原数字位数一样多,总火柴数量也一样多,要求你构造新的式子算出来的结果最大。

思路:我们用dp[i][j]表示前i个数 用了j根火柴 所能达到的最大值 为此我们需要先预处理两个数组 mx[i][j] mn[i][j] 分别表示 i位数用了j根火柴的最大值/最小值

于是对于dp方程 我们可以得出 dp[i][j]=max(dp[i-1][j-p-2]+mx[b[i]][j],dp[i-1][j-p-1]+mn[b[i]][j])  其中b[i]是第i个数字的位数 在dp方程中 我们考虑了+和-所带来的影响.

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
ll mx[][],mn[][];
int a[]={,,,,,,,,,}; //每个字符消耗的火柴数
ll dp[][]; //前i个数字 用了j根火柴
int b[]; //位数
void init(){
for(int i=;i<;i++)
for(int j=;j<;j++){
mx[i][j]=-; //i位数 用j个火柴可以达到的最大值
mn[i][j]=1e17;//i位数 用j个火柴可以达到的最小值
}
mx[][]=mn[][]=;
for(int i=;i<;i++)
for(int j=;j<=i*;j++)
for(int k=;k<=;k++){
if(j<a[k]) continue;
mx[i][j]=max(mx[i][j],mx[i-][j-a[k]]*+k); //类似背包找最大值
mn[i][j]=min(mn[i][j],mn[i-][j-a[k]]*+k);
}
}
int main(){
ios::sync_with_stdio(false);
init();
int t;
cin>>t;
while(t--){
memset(dp,-,sizeof(dp));
memset(b,,sizeof(b));
int n;
cin>>n;
string s;
cin>>s;
int len=s.length();
int m=; //火柴数
int k=; //字符数
for(int i=;i<len;i++){
if(s[i]=='+'){
k++;
m+=;
}else if(s[i]=='-'){
k++;
m++;
}else{
m+=a[s[i]-''];
b[k]++;
}
}
for(int i=;i<=m;i++)
if(mx[b[]][i]!=-)
dp[][i]=mx[b[]][i]; //初始化边界
for(int i=;i<=k;i++)
for(int j=;j<=m;j++)
for(int p=;p<=;p++){
if(j-p->=&&dp[i-][j-p-]!=-){ //考虑+号
if(mx[b[i]][p]!=-)
dp[i][j]=max(dp[i][j],dp[i-][j-p-]+mx[b[i]][p]);
}
if(j-p->=&&dp[i-][j-p-]!=-){ //考虑-号
if(mn[b[i]][p]!=1e17)
dp[i][j]=max(dp[i][j],dp[i-][j-p-]-mn[b[i]][p]);
}
}
cout<<dp[k][m]<<endl;
}
return ;
}

ICPC China Nanchang National Invitational -- D. Match Stick Game(dp)的更多相关文章

  1. 2019The Preliminary Contest for ICPC China Nanchang National Invitational

    The Preliminary Contest for ICPC China Nanchang National Invitational 题目一览表 考察知识点 I. Max answer 单调栈+ ...

  2. The Preliminary Contest for ICPC China Nanchang National Invitational

    目录 Contest Info Solutions A. PERFECT NUMBER PROBLEM D. Match Stick Game G. tsy's number H. Coloring ...

  3. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  4. The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer (单调栈+线段树)

    题目链接:https://nanti.jisuanke.com/t/38228 题目大意:一个区间的值等于该区间的和乘以区间的最小值.给出一个含有n个数的序列(序列的值有正有负),找到该序列的区间最大 ...

  5. The Preliminary Contest for ICPC China Nanchang National Invitational and International Silk-Road Programming Contest

    打网络赛 比赛前的准备工作要做好 确保 c++/java/python的编译器能用 打好模板,放在桌面 A. PERFECT NUMBER PROBLEM #include <cstdio> ...

  6. The Preliminary Contest for ICPC China Nanchang National Invitational I题

    Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values ...

  7. Max answer(The Preliminary Contest for ICPC China Nanchang National Invitational)

    Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values ...

  8. The Preliminary Contest for ICPC China Nanchang National Invitational I.Max answer单调栈

    题面 题意:一个5e5的数组,定义一个区间的值为 这个区间的和*这个区间的最小值,注意数组值有负数有正数,求所有区间中最大的值 题解:如果全是正数,那就是原题 POJ2796 单调栈做一下就ok 我们 ...

  9. 2019 The Preliminary Contest for ICPC China Nanchang National Invitational(A 、H 、I 、K 、M)

    A. PERFECT NUMBER PROBLEM 题目链接:https://nanti.jisuanke.com/t/38220 题意: 输出前五个完美数 分析: 签到.直接百度完美数输出即可 #i ...

随机推荐

  1. [MySQL] mysql的逻辑分层

    mysql逻辑分层:1.client ==>连接层 ==>服务层==>引擎层==>存储层 server2.连接层: 提供与客户端连接的服务3.服务层: 1.提供各种用户使用的接 ...

  2. 微擎模块的安装文件manifest.xml

    微擎在安装或卸载模块时会根据manifest.xml生成(或删除)数据库中相应记录,并执行manifest.xml里指定的脚本. manifest.xml文件内容详细介绍如下: manifest - ...

  3. Docker-compose command 有多个命令例子

    cat docker-compose.yml version: '3.4' services: klvchen: image: python_django:19.03.0 ports: - 8000: ...

  4. MyBatis Generator 生成器把其他数据库的同名表生成下来的问题

    [问题] 使用MyBatis Generator生成器时,发现Mapper文件中出现字段与连接数据库不符,经过查找发现该表是其他数据库的同名表的字段. [解决问题] 在构造文件中,这里是generat ...

  5. Numpy库的学习(五)

    今天继续学习一下Numpy库,废话不多说,整起走 先说下Numpy中,经常会犯错的地方,就是数据的复制 这个问题不仅仅是在numpy中有,其他地方也同样会出现 import numpy as np a ...

  6. Spark Streaming 快速入门

    一.简介 1.便于使用 Spark Streaming将Apache Spark的 语言集成API 引入流处理,使您可以像编写批处理作业一样编写流式作业.它支持Java,Scala和Python. 2 ...

  7. Eclipse为工具包关联源码(本例工具包为dom4j-1.6.1)

    最近学习了dom4j解析xml文件,然而在eclipse中,每次想看源码都要去到源代码文件里看,不能在eclipse中直接看, 然后我就瞎折腾,终于知道怎么把源代码添加到eclipse中了.(我的ec ...

  8. apache ranger源码编译

    官方文档 http://ranger.apache.org/quick_start_guide.html Quick Start Guide Build Process 1. Check out th ...

  9. Element-UI动态更换主题

    参考:vue-基于elementui换肤[自定义主题] 实践: 需求1.后期维护主题色不更换:  直接在线主题生成工具下载,在APP.VUE引入:(注意Element UI 版本1.3?2.0) 需求 ...

  10. HTML之表单

    目录 表单的结构 get方式与post方式 输入 单行文本输入框 提交按钮和重置按钮 密码输入框 复选框 单选按钮 图像按钮 文本选择输入框 隐藏框 多行文本输入框 下拉列表框 新增输入元素 新增其他 ...