题目链接:https://nanti.jisuanke.com/t/38223

题意:有一堆火柴构成了一个加减法式子,你可以把火柴重新组合,要求数字个数和原来一样多,每个数字的位数和对应原数字位数一样多,总火柴数量也一样多,要求你构造新的式子算出来的结果最大。

思路:我们用dp[i][j]表示前i个数 用了j根火柴 所能达到的最大值 为此我们需要先预处理两个数组 mx[i][j] mn[i][j] 分别表示 i位数用了j根火柴的最大值/最小值

于是对于dp方程 我们可以得出 dp[i][j]=max(dp[i-1][j-p-2]+mx[b[i]][j],dp[i-1][j-p-1]+mn[b[i]][j])  其中b[i]是第i个数字的位数 在dp方程中 我们考虑了+和-所带来的影响.

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
ll mx[][],mn[][];
int a[]={,,,,,,,,,}; //每个字符消耗的火柴数
ll dp[][]; //前i个数字 用了j根火柴
int b[]; //位数
void init(){
for(int i=;i<;i++)
for(int j=;j<;j++){
mx[i][j]=-; //i位数 用j个火柴可以达到的最大值
mn[i][j]=1e17;//i位数 用j个火柴可以达到的最小值
}
mx[][]=mn[][]=;
for(int i=;i<;i++)
for(int j=;j<=i*;j++)
for(int k=;k<=;k++){
if(j<a[k]) continue;
mx[i][j]=max(mx[i][j],mx[i-][j-a[k]]*+k); //类似背包找最大值
mn[i][j]=min(mn[i][j],mn[i-][j-a[k]]*+k);
}
}
int main(){
ios::sync_with_stdio(false);
init();
int t;
cin>>t;
while(t--){
memset(dp,-,sizeof(dp));
memset(b,,sizeof(b));
int n;
cin>>n;
string s;
cin>>s;
int len=s.length();
int m=; //火柴数
int k=; //字符数
for(int i=;i<len;i++){
if(s[i]=='+'){
k++;
m+=;
}else if(s[i]=='-'){
k++;
m++;
}else{
m+=a[s[i]-''];
b[k]++;
}
}
for(int i=;i<=m;i++)
if(mx[b[]][i]!=-)
dp[][i]=mx[b[]][i]; //初始化边界
for(int i=;i<=k;i++)
for(int j=;j<=m;j++)
for(int p=;p<=;p++){
if(j-p->=&&dp[i-][j-p-]!=-){ //考虑+号
if(mx[b[i]][p]!=-)
dp[i][j]=max(dp[i][j],dp[i-][j-p-]+mx[b[i]][p]);
}
if(j-p->=&&dp[i-][j-p-]!=-){ //考虑-号
if(mn[b[i]][p]!=1e17)
dp[i][j]=max(dp[i][j],dp[i-][j-p-]-mn[b[i]][p]);
}
}
cout<<dp[k][m]<<endl;
}
return ;
}

ICPC China Nanchang National Invitational -- D. Match Stick Game(dp)的更多相关文章

  1. 2019The Preliminary Contest for ICPC China Nanchang National Invitational

    The Preliminary Contest for ICPC China Nanchang National Invitational 题目一览表 考察知识点 I. Max answer 单调栈+ ...

  2. The Preliminary Contest for ICPC China Nanchang National Invitational

    目录 Contest Info Solutions A. PERFECT NUMBER PROBLEM D. Match Stick Game G. tsy's number H. Coloring ...

  3. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  4. The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer (单调栈+线段树)

    题目链接:https://nanti.jisuanke.com/t/38228 题目大意:一个区间的值等于该区间的和乘以区间的最小值.给出一个含有n个数的序列(序列的值有正有负),找到该序列的区间最大 ...

  5. The Preliminary Contest for ICPC China Nanchang National Invitational and International Silk-Road Programming Contest

    打网络赛 比赛前的准备工作要做好 确保 c++/java/python的编译器能用 打好模板,放在桌面 A. PERFECT NUMBER PROBLEM #include <cstdio> ...

  6. The Preliminary Contest for ICPC China Nanchang National Invitational I题

    Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values ...

  7. Max answer(The Preliminary Contest for ICPC China Nanchang National Invitational)

    Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values ...

  8. The Preliminary Contest for ICPC China Nanchang National Invitational I.Max answer单调栈

    题面 题意:一个5e5的数组,定义一个区间的值为 这个区间的和*这个区间的最小值,注意数组值有负数有正数,求所有区间中最大的值 题解:如果全是正数,那就是原题 POJ2796 单调栈做一下就ok 我们 ...

  9. 2019 The Preliminary Contest for ICPC China Nanchang National Invitational(A 、H 、I 、K 、M)

    A. PERFECT NUMBER PROBLEM 题目链接:https://nanti.jisuanke.com/t/38220 题意: 输出前五个完美数 分析: 签到.直接百度完美数输出即可 #i ...

随机推荐

  1. c#封装DBHelper类

    public enum EffentNextType { /// <summary> /// 对其他语句无任何影响 /// </summary> None, /// <s ...

  2. java:数据结构(二)栈的应用(括号匹配)

    一.什么是括号匹配: 括号匹配就是利用计算机辨别表达式里面的括号是否书写成功 例如: {()((a)) }这就是一个正确 (()()   这就是一个错误的 二.括号匹配的算法: 众所周知,括号分为花括 ...

  3. 回归算法比较(线性回归,Ridge回归,Lasso回归)

    代码: # -*- coding: utf-8 -*- """ Created on Mon Jul 16 09:08:09 2018 @author: zhen &qu ...

  4. selenium-测试框架搭建(十三)

    思路 分离业务代码和测试数据,提高代码可维护性,实现自动化,减少重复劳动. 一个测试框架大概由配置文件,测试数据,测试用例,相关文件(发送邮件等),测试日志,断言和测试报告等模块组成. 结构 以页面为 ...

  5. C#中++i与i++的区别

    日常编程中经常用到++i与i++,知识点虽然很小,但有时候会犯迷糊,在这里小小的记录一下. ++i 即前递增,顾名思义也就是先自增后传值: 举个栗子 int i=5; int j=++i; 此时i的值 ...

  6. JavaScript(四)变量

    变量的声明 在JavaScript程序中,使用一个变量之前应当使用关键字var进行声明,如下所示:var num;var sum; 也可以写成var num,sum,avg;如果只是声明变量而没有给变 ...

  7. kubernetes deployment升级和回滚

    a.创建deployment pod kubectl run mynginx --image=docker.io/nginx: --record 准备svc文件 apiVersion: v1 kind ...

  8. L2TP连接尝试失败,因为安全层在初始化与远程计算机的协商时遇到了一个处理错误(转)

    L2TP连接尝试失败,因为安全层在初始化与远程计算机的协商时遇到了一个处理错误   错误描述:“ L2TP连接尝试失败,因为安全层在初始化与远程计算机的协商时遇到了一个处理错误” 只有这个没有错误码. ...

  9. java的环境变量配置失败(java.exe、javaw.exe、javaws.exe优先级问题冲突)

    前言:首先安装了intelliJ Idea 其次安装了JDK 1.8 配置完三个系统变量后,java和javac执行不通过 配置过程 1.我的电脑(右键)--->属性---->高级---& ...

  10. 好的RESTful API的设计原则

    转载自一位大佬 英文原版 Principles of good RESTful API Design Good API design is hard! An API represents a cont ...