代码:

 # -*- coding: utf-8 -*-
"""
Created on Tue Jul 17 10:13:20 2018 @author: zhen
""" from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
import mglearn
import matplotlib.pyplot as plt x, y = mglearn.datasets.make_forge() fig, axes = plt.subplots(1, 2, figsize=(10,3))
# 线性支持向量机与逻辑回归进行比较
for model, ax in zip([LinearSVC(), LogisticRegression()], axes):
clf = model.fit(x, y)
mglearn.plots.plot_2d_separator(clf, x, fill=False, eps=0.5, ax=ax, alpha=0.7)
mglearn.discrete_scatter(x[:, 0], x[:, 1], y, ax=ax)
ax.set_title("{}".format(clf.__class__.__name__))
ax.set_xlabel("Feature 0")
ax.set_ylabel("Feature 1")
axes[0].legend() #
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
cancer = load_breast_cancer() x_train, x_test, y_train, y_test = train_test_split(cancer.data, cancer.target, stratify=cancer.target, random_state=42)
# 使用默认配置参数
log_reg = LogisticRegression().fit(x_train, y_train) print("="*25+"逻辑回归(C=1)"+"="*25)
print("Training set score:{:.3f}".format(log_reg.score(x_train, y_train)))
print("Test set score:{:.3f}".format(log_reg.score(x_test, y_test))) # 使用配置参数C=100
log_reg_100 = LogisticRegression(C=100).fit(x_train, y_train) print("="*25+"逻辑回归(C=100)"+"="*25)
print("Training set score:{:.3f}".format(log_reg_100.score(x_train, y_train)))
print("Test set score:{:.3f}".format(log_reg_100.score(x_test, y_test))) # 使用配置参数C=0.01
log_reg_001 = LogisticRegression(C=0.01).fit(x_train, y_train) print("="*25+"逻辑回归(C=0.01)"+"="*25)
print("Training set score:{:.3f}".format(log_reg_001.score(x_train, y_train)))
print("Test set score:{:.3f}".format(log_reg_001.score(x_test, y_test)))
print("="*25+"逻辑回归&线性支持向量机"+"="*25)
# 可视化
fig, axes = plt.subplots(1, 1, figsize=(10,3))
plt.plot(log_reg.coef_.T, 'o', label="C=1")
plt.plot(log_reg_100.coef_.T, '^', label="C=100")
plt.plot(log_reg_001.coef_.T, 'v', label="C=0.01")
plt.xticks(range(cancer.data.shape[1]), cancer.feature_names, rotation=90)
plt.hlines(0, 0, cancer.data.shape[1]) plt.ylim(-5, 5) plt.xlabel("Cofficient indes")
plt.ylabel("Cofficient magnitude") plt.legend()

结果:

逻辑回归&线性支持向量机的更多相关文章

  1. 一小部分机器学习算法小结: 优化算法、逻辑回归、支持向量机、决策树、集成算法、Word2Vec等

    优化算法 先导知识:泰勒公式 \[ f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \] 一阶泰勒展开: \[ f(x)\approx ...

  2. 逻辑回归(LR)和支持向量机(SVM)的区别和联系

    1. 前言 在机器学习的分类问题领域中,有两个平分秋色的算法,就是逻辑回归和支持向量机,这两个算法个有千秋,在不同的问题中有不同的表现效果,下面我们就对它们的区别和联系做一个简单的总结. 2. LR和 ...

  3. [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...

  4. 100天搞定机器学习|Day17-18 神奇的逻辑回归

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  5. 逻辑回归 vs 决策树 vs 支持向量机(I)

    原文链接:http://www.edvancer.in/logistic-regression-vs-decision-trees-vs-svm-part1/ 分类问题是我们在各个行业的商业业务中遇到 ...

  6. PRML读书会第四章 Linear Models for Classification(贝叶斯marginalization、Fisher线性判别、感知机、概率生成和判别模型、逻辑回归)

    主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以 ...

  7. 关于逻辑回归是否线性?sigmoid

    from :https://www.zhihu.com/question/29385169/answer/44177582 逻辑回归的模型引入了sigmoid函数映射,是非线性模型,但本质上又是一个线 ...

  8. 逻辑回归 vs 决策树 vs 支持向量机(II)

    原文地址: Logistic Regression vs Decision Trees vs SVM: Part II 在这篇文章,我们将讨论如何在逻辑回归.决策树和SVM之间做出最佳选择.其实 第一 ...

  9. 线性、逻辑回归的java实现

    线性回归和逻辑回归的实现大体一致,将其抽象出一个抽象类Regression,包含整体流程,其中有三个抽象函数,将在线性回归和逻辑回归中重写. 将样本设为Sample类,其中采用数组作为特征的存储形式. ...

随机推荐

  1. 30分钟玩转Net MVC 基于WebUploader的大文件分片上传、断网续传、秒传(文末附带demo下载)

    现在的项目开发基本上都用到了上传文件功能,或图片,或文档,或视频.我们常用的常规上传已经能够满足当前要求了, 然而有时会出现如下问题: 文件过大(比如1G以上),超出服务端的请求大小限制: 请求时间过 ...

  2. 结合JDK源码看设计模式——组合模式

    前言: 相信大家都打开过层级很多很多的文件夹.如果把第一个文件夹看作是树的根节点的话,下面的子文件夹就可以看作一个子节点.不过最终我们寻找的还是文件夹中的文件,文件可以看做是叶子节点.下面我们介绍一种 ...

  3. 《ASP.NET MVC 5 高级编程》学习笔记

    前言: 记得当初培训的时候,学习的还是ASP.NET,现在回想一下,图片水印.统计人数.过滤器....HttpHandler是多么的经典! 不过后来接触到了MVC,便立马爱上了它.Model-View ...

  4. ABP项目依赖图,根据自已生在的Demo项目分析而得

    根据自已生在的Demo项目分析而得 在线学习代码库:https://github.com/AtwindYu/ABPStudy

  5. Linux 开启和关闭 Ping 操作

    Linux 默认是开启 ping 操作的,通过以下两种方式可以开启和关闭 ping 操作 . 1.修改内核参数 通过内核参数设置也有两种方式,一种是临时修改,一种是永久修改. 1.1 临时设置 PIN ...

  6. MQTT 单个订阅消息量过大处理

    The missing piece between MQTT and a SQL database in a M2M landscape Message Queue Telemetry Transpo ...

  7. 在asp.net core2.1中添加中间件以扩展Swashbuckle.AspNetCore3.0支持简单的文档访问权限控制

    Swashbuckle.AspNetCore3.0 介绍 一个使用 ASP.NET Core 构建的 API 的 Swagger 工具.直接从您的路由,控制器和模型生成漂亮的 API 文档,包括用于探 ...

  8. 百度APP移动端网络深度优化实践分享(二):网络连接优化篇

    本文由百度技术团队“蔡锐”原创发表于“百度App技术”公众号,原题为<百度App网络深度优化系列<二>连接优化>,感谢原作者的无私分享. 一.前言 在<百度APP移动端网 ...

  9. 主机与虚拟机都可以上网,但是互相ping不通

    问题:主机与虚拟机都可以上网,但是互相ping不通  可能:相关入站规则没有启用  解决:第4步双击后,打勾设置“已启用” 

  10. ios的跨站脚本限制

    概述 项目中碰到一个问题,就是在ios机上,用iframe内嵌的网页有时需要登录,有时候又不需要登录.查找了半天,终于发现是ios的跨站脚本限制导致的.这里就来介绍下跨站脚本限制,供以后开发时参考,相 ...