逻辑回归&线性支持向量机
代码:
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 17 10:13:20 2018 @author: zhen
""" from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
import mglearn
import matplotlib.pyplot as plt x, y = mglearn.datasets.make_forge() fig, axes = plt.subplots(1, 2, figsize=(10,3))
# 线性支持向量机与逻辑回归进行比较
for model, ax in zip([LinearSVC(), LogisticRegression()], axes):
clf = model.fit(x, y)
mglearn.plots.plot_2d_separator(clf, x, fill=False, eps=0.5, ax=ax, alpha=0.7)
mglearn.discrete_scatter(x[:, 0], x[:, 1], y, ax=ax)
ax.set_title("{}".format(clf.__class__.__name__))
ax.set_xlabel("Feature 0")
ax.set_ylabel("Feature 1")
axes[0].legend() #
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
cancer = load_breast_cancer() x_train, x_test, y_train, y_test = train_test_split(cancer.data, cancer.target, stratify=cancer.target, random_state=42)
# 使用默认配置参数
log_reg = LogisticRegression().fit(x_train, y_train) print("="*25+"逻辑回归(C=1)"+"="*25)
print("Training set score:{:.3f}".format(log_reg.score(x_train, y_train)))
print("Test set score:{:.3f}".format(log_reg.score(x_test, y_test))) # 使用配置参数C=100
log_reg_100 = LogisticRegression(C=100).fit(x_train, y_train) print("="*25+"逻辑回归(C=100)"+"="*25)
print("Training set score:{:.3f}".format(log_reg_100.score(x_train, y_train)))
print("Test set score:{:.3f}".format(log_reg_100.score(x_test, y_test))) # 使用配置参数C=0.01
log_reg_001 = LogisticRegression(C=0.01).fit(x_train, y_train) print("="*25+"逻辑回归(C=0.01)"+"="*25)
print("Training set score:{:.3f}".format(log_reg_001.score(x_train, y_train)))
print("Test set score:{:.3f}".format(log_reg_001.score(x_test, y_test)))
print("="*25+"逻辑回归&线性支持向量机"+"="*25)
# 可视化
fig, axes = plt.subplots(1, 1, figsize=(10,3))
plt.plot(log_reg.coef_.T, 'o', label="C=1")
plt.plot(log_reg_100.coef_.T, '^', label="C=100")
plt.plot(log_reg_001.coef_.T, 'v', label="C=0.01")
plt.xticks(range(cancer.data.shape[1]), cancer.feature_names, rotation=90)
plt.hlines(0, 0, cancer.data.shape[1]) plt.ylim(-5, 5) plt.xlabel("Cofficient indes")
plt.ylabel("Cofficient magnitude") plt.legend()
结果:
逻辑回归&线性支持向量机的更多相关文章
- 一小部分机器学习算法小结: 优化算法、逻辑回归、支持向量机、决策树、集成算法、Word2Vec等
优化算法 先导知识:泰勒公式 \[ f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \] 一阶泰勒展开: \[ f(x)\approx ...
- 逻辑回归(LR)和支持向量机(SVM)的区别和联系
1. 前言 在机器学习的分类问题领域中,有两个平分秋色的算法,就是逻辑回归和支持向量机,这两个算法个有千秋,在不同的问题中有不同的表现效果,下面我们就对它们的区别和联系做一个简单的总结. 2. LR和 ...
- [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...
- 100天搞定机器学习|Day17-18 神奇的逻辑回归
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...
- 逻辑回归 vs 决策树 vs 支持向量机(I)
原文链接:http://www.edvancer.in/logistic-regression-vs-decision-trees-vs-svm-part1/ 分类问题是我们在各个行业的商业业务中遇到 ...
- PRML读书会第四章 Linear Models for Classification(贝叶斯marginalization、Fisher线性判别、感知机、概率生成和判别模型、逻辑回归)
主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以 ...
- 关于逻辑回归是否线性?sigmoid
from :https://www.zhihu.com/question/29385169/answer/44177582 逻辑回归的模型引入了sigmoid函数映射,是非线性模型,但本质上又是一个线 ...
- 逻辑回归 vs 决策树 vs 支持向量机(II)
原文地址: Logistic Regression vs Decision Trees vs SVM: Part II 在这篇文章,我们将讨论如何在逻辑回归.决策树和SVM之间做出最佳选择.其实 第一 ...
- 线性、逻辑回归的java实现
线性回归和逻辑回归的实现大体一致,将其抽象出一个抽象类Regression,包含整体流程,其中有三个抽象函数,将在线性回归和逻辑回归中重写. 将样本设为Sample类,其中采用数组作为特征的存储形式. ...
随机推荐
- spark集群搭建整理之解决亿级人群标签问题
最近在做一个人群标签的项目,也就是根据客户的一些交易行为自动给客户打标签,而这些标签更有利于我们做商品推荐,目前打上标签的数据已达5亿+, 用户量大概1亿+,项目需求就是根据各种组合条件寻找标签和人群 ...
- 深入浅出—Redis集群的相关详解
前言: 这篇文章主要介绍了Redis集群的相关,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值. 注意!要求使用的都是redis3.0以上的版本,因为3.0以上增加了red ...
- 开发时候常用的js方法封装
1.判断是否是一个数组 function isArray(arr){ return Object.prototype.toString.call(arr) ==='[object Array]'; } ...
- Dynamics CRM 配置 OAuth 2.0
关注本人微信和易信公众号: 微软动态CRM专家罗勇 ,回复124或者20140324可方便获取本文,同时可以在第一时间得到我发布的最新的博文信息,follow me! 本博文主要参考但不限于如下资料: ...
- 2019-01-29 VS Code创建自定义Python代码片段
续前文[日常]Beyond的歌里最多是"唏嘘"吗? - Python分词+词频最后的想法, 发现VS Code支持用户自定义代码片段: Creating your own snip ...
- 好代码是管出来的——使用Jenkins搭建CI服务器
Jenkins是一个开源的跨平台的CI工具,它可以部署在Windows.Linux等平台上,并且Jenkins提供了非常丰富的插件来帮助完成编译.测试.部署等工作. 本文将介绍在Windows平台上使 ...
- redis 特性
Redis 三大特性: Redis 支持数据的持久化,可以将内存中的数据保存在磁盘中,重启的时候可以再次加载进行使用 Redis 不仅支持简单的 键 * 值 类型的数据, 还提供list.set.z ...
- JS Bootstrap-DateRangePicker 如何设置默认值为空
DateRangePicker是一款时间范围选择器,界面良好,非常适合短时间范围选择的插件,具体源码可以在http://www.daterangepicker.com/找到 ,但是目前使用中,感觉功能 ...
- js生成[n,m]的随机数,js如何生成随机数,javascript随机数Math.random()
一.预备知识 Math.ceil(); //向上取整. Math.floor(); //向下取整. Math.round(); //四舍五入. Math.random(); //0.0 ~ 1 ...
- 深入理解this关键字
Java提供了一个this关键字,this关键字总是指向调用该方法的对象.根据this出现的位置的不同,this作为对象的默认引用有两种情形. 1)构造器中引用该构造器正在初始化的对象. 2)在方法中 ...