resnet18全连接层改成卷积层
想要尝试一下将resnet18最后一层的全连接层改成卷积层看会不会对网络效果和网络大小有什么影响
1.首先先对train.py中的更改是:
train.py代码可见:pytorch实现性别检测
# model_conv.fc = nn.Linear(fc_features, 2)这是之前的写法
model_conv.fc = nn.Conv2d(fc_features, 2, 1)
print(model_conv.fc)
但是运行的时候出错:
1)
RuntimeError: Expected -dimensional input for -dimensional weight [, , , ], but got -dimensional input of size [, ] instead
[2, 512, 1, 1]为[batch_size, channels, height, width],压扁flat后为[4, 512],即[batch_size, out_size]
这是因为在传到fc层前进行了压扁的操作:
x = x.view(x.size(), -)
到相应的代码处/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torchvision/models/resnet.py注释掉其即可
2)
Traceback (most recent call last):
File "train.py", line , in <module>
model_train = train_model(model_conv, criterion, optimizer_conv, exp_lr_scheduler)
File "train.py", line , in train_model
loss = criterion(outputs, labels)
File "/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/nn/modules/module.py", line , in __call__
result = self.forward(*input, **kwargs)
File "/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/nn/modules/loss.py", line , in forward
ignore_index=self.ignore_index, reduction=self.reduction)
File "/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/nn/functional.py", line , in cross_entropy
return nll_loss(log_softmax(input, ), target, weight, None, ignore_index, None, reduction)
File "/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/nn/functional.py", line , in nll_loss
ret = torch._C._nn.nll_loss2d(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
RuntimeError: invalid argument : only batches of spatial targets supported (3D tensors) but got targets of dimension: at /Users/soumith/b101_2/2019_02_08/wheel_build_dirs/wheel_3./pytorch/aten/src/THNN/generic/SpatialClassNLLCriterion.c:
先将得到的结果打印出来:
print(outputs,outputs.shape)
print(labels, labels.shape)
得到:
tensor([[[[-0.8409]],
[[ 0.3311]]],
[[[-0.3910]],
[[ 0.6904]]],
[[[-0.4417]],
[[ 0.3846]]],
[[[-1.1002]],
[[ 0.6044]]]], grad_fn=<ThnnConv2DBackward>) torch.Size([, , , ])
tensor([, , , ]) torch.Size([])
可见得到的结果不是最后想要的结果,需要将channel*height*width=2*1*1变为2,结果为[4,2]
然后后面回运行:
_, preds = torch.max(outputs, )
得到两个值中最大那个值的索引,结果的shape就会变成[4]
这里的解决办法就是在resnet.py代码的fc层下面加入一层代码:
x = x.view(x.size(), -)
这样最终resnet网络的forward()函数应该是:
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x) x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x) x = self.avgpool(x)
#x = x.view(x.size(0), -1)
x = self.fc(x)
x = x.view(x.size(), -)
return x
2.然后再运行即可,但是我的结果并没有很大的不同,训练的网络大小也差不多
resnet18全连接层改成卷积层的更多相关文章
- 由浅入深:CNN中卷积层与转置卷积层的关系
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷 ...
- caffe怎么把全连接层转成convolutional层
caffe中有把fc层转化为conv层的,其实怎么看参数都是不变的,对alex模型来说,第一个fc层的参数是4096X9216,而conv的维度是4096x256x6x6,因此参数个数是不变的,只是需 ...
- Altium Designer 18 画keepout层与将keepout层转换成Mechanical1层的方法
画keepout的方法 先选中Keepout层:然后 右键->Place->Keepout->然后选择要画圆还是线 Keepout层一般只用来辅助Layout,不能作为PCB的外形结 ...
- 81、Tensorflow实现LeNet-5模型,多层卷积层,识别mnist数据集
''' Created on 2017年4月22日 @author: weizhen ''' import os import tensorflow as tf import numpy as np ...
- 【TensorFlow/简单网络】MNIST数据集-softmax、全连接神经网络,卷积神经网络模型
初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构 ...
- FCN用卷积层代替FC层原因(转)
分类任务 CNN对于常见的分类任务,基本是一个鲁棒且有效的方法.例如,做物体分类的话,入门级别的做法就是利用caffe提供的alexnet的模型,然后把输出的全连接层稍稍修改称为自己想要的类别数,然后 ...
- FCN用卷积层代替FC层原因(转)
原博客连接 : https://www.cnblogs.com/byteHuang/p/6959714.html CNN对于常见的分类任务,基本是一个鲁棒且有效的方法.例如,做物体分类的话,入门级别的 ...
- Casting a Classifier into a Fully Convolutional Network将带全连接的网络做成全卷积网络
详见:http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/net_surgery.ipynb 假设使用标准的caffe ...
- caffe Python API 之卷积层(Convolution)
1.Convolution层: 就是卷积层,是卷积神经网络(CNN)的核心层. 层类型:Convolution lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配 ...
随机推荐
- [FromBody]与[FromForm]区别
[FromBody]与[FromForm]区别 1,fromBody:在cation方法传入参数后添加[frombody]属性,参数将以一个整体的josn对象的形式传递. 2,fromform:在ca ...
- Storm入门(十一)Twitter Storm源代码分析之CoordinatedBolt
作者: xumingming | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明网址: http://xumingming.sinaapp.com/811/twitter-stor ...
- Python写爬虫爬妹子
最近学完Python,写了几个爬虫练练手,网上的教程有很多,但是有的已经不能爬了,主要是网站经常改,可是爬虫还是有通用的思路的,即下载数据.解析数据.保存数据.下面一一来讲. 1.下载数据 首先打 ...
- 用ASP.NET Core 2.1 建立规范的 REST API -- 翻页/排序/过滤等
本文所需的一些预备知识可以看这里: http://www.cnblogs.com/cgzl/p/9010978.html 和 http://www.cnblogs.com/cgzl/p/9019314 ...
- Django rest framework源码分析(1)----认证
目录 Django rest framework(1)----认证 Django rest framework(2)----权限 Django rest framework(3)----节流 Djan ...
- python接口自动化(九)--python中字典和json的区别(详解)
简介 这篇文章的由来是由于上一篇发送post请求的接口时候,参数传字典(dict)和json的缘故,因为python中,json和dict非常类似,都是key-value的形式,为啥还要这么传参,在群 ...
- 『集群』006 Slithice 后期改进 和 Slithice可能存在的BUG
Slithice 后期改进 和 Slithice可能存在的BUG Slithice 可能存在的 BUG: >Slithice 暂时 没有 对 循环调度 进行控制:不正确的 配置 可能导致 调度死 ...
- Vue基础(环境配置、内部指令、全局API、选项、内置组件)
1.环境配置 安装VsCode 安装包管理工具:直接下载 NodeJS 进行安装即可,NodeJS自带 Npm 包管理工具,下载地址:https://nodejs.org/en/download/安装 ...
- Python编程从入门到实践笔记——变量和简单数据类型
Python编程从入门到实践笔记——变量和简单数据类型 #coding=gbk #变量 message_1 = 'aAa fff' message_2 = 'hart' message_3 = &qu ...
- Java基础系列-二进制操作
原创文章,转载请标注出处:<Java基础系列-二进制操作> 概述 Java源码中涉及到大量的二进制操作,非常的复杂,但非常的快速. Java二进制表示法 首先了解下二进制,二进制是相对十进 ...