强烈谴责只有 125MB 的行为,然后我没删调试是个什么 SB。。。

闲话少说,切入正题——


首先看到取余和数字是可以排列的,我们自然而然的想到了数位 dp,但是很显然这题不是的数位 dp 通常解决的是 \(1\sim k\) 之间符合要求的数这里是恰好符合的。

发现 \(s\) 长度很小,只有 \(15\),所以考虑状压。

然后这个时候 SX 还没看出来是状压足以见得他是个瞎子了!

如果数据范围很小还是个 dp 一定要考虑状压!!!!!

如果数据范围很小还是个 dp 一定要考虑状压!!!!!

也就 SX 这种带聪明想不到状压了吧/qd


然后就很显然要记录余数,设 \(f_{i, S}\) 为选择状态为 \(S\) 余数为 \(i\) 的方案数。

如果我们要加入一个数字,首先他要不在 \(S\) 内(一直没判这个调了很长时间,所以我是压根不会状压石锤,这种弱智玩意儿都没看出来),然后转移很显然 \(f_{(10i + a_j)\bmod d, S|(1<<j)} += f_{i, S}\)。

重复数字除以它出现次数阶乘即可。

代码:

//SIXIANG
#include <iostream>
#include <string>
#include <algorithm>
#include <cstring>
#define MAXN 1000
#define int long long
#define QWQ cout << "QWQ" << endl;
using namespace std;
int f[MAXN + 10][(1 << 10) + 10], arr[10], t[10], frac[16];
void pre() {
frac[0] = 1;
for(int p = 1; p <= 16; p++) frac[p] = frac[p - 1] * p;
}
signed main() {
pre();
int T; cin >> T;
string str; int d;
while(T--) {
cin >> str >> d;
memset(t, 0, sizeof(t));
memset(arr, 0, sizeof(arr));
memset(f, 0, sizeof(f));
int i = 0;
for(int p = 0; p < str.size(); p++)
t[str[p] - '0']++, arr[p] = str[p] - '0'; f[0][0] = 1;
int len = str.size();
for(int S = 0; S < (1 << len); S++)
for(int p = 0; p < len; p++)
for(int i = 0; i < d; i++)
if(!((S >> p) & 1))
f[(10 * i + arr[p]) % d][S | (1 << p)] += f[i][S];
for(int p = 0; p <= 9; p++)
f[0][(1 << len) - 1] /= frac[t[p]]; cout << f[0][(1 << len) - 1] << endl;
}
}

顺便提一嘴,这里面枚举 S 要放在外层循环。因为显然余数一维不可能作为阶段。

以及 500ms 确实有点卡。

题解 P4163 [SCOI2007]排列的更多相关文章

  1. P4163 [SCOI2007]排列——next_permutation

    P4163 [SCOI2007]排列 注意要排序: next_permutation prev_permutation #include<cstdio> #include<cstri ...

  2. LUOGU P4163 [SCOI2007]排列

    传送门 解题思路 首先我们发现这道题s的长度很小,所以考虑点暴力的做法,状压dp或搜索.本蒟蒻搜索永远调不对,所以就写了个状压dp.因为所有s里的数都要出现一次,并且最后的答案是要求整除,那么我们设d ...

  3. 暑假集训Day 4 P4163 [SCOI2007]排列 (状压dp)

    状压dp (看到s的长度不超过10就很容易想到是状压dp了 但是这个题的状态转移方程比较特殊) 题目大意 给一个数字串 s 和正整数 d, 统计 s 有多少种不同的排列能被 d 整除(可以有前导 0) ...

  4. BZOJ 1072: [SCOI2007]排列perm 状态压缩DP

    1072: [SCOI2007]排列perm Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为 ...

  5. SCOI2007排列perm

    1072: [SCOI2007]排列perm Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 805  Solved: 497[Submit][Stat ...

  6. BZOJ 1072 [SCOI2007]排列perm

    1072: [SCOI2007]排列perm Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1268  Solved: 782[Submit][Sta ...

  7. [BZOJ1072][SCOI2007]排列perm 状压dp

    1072: [SCOI2007]排列perm Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2488  Solved: 1546[Submit][St ...

  8. [BZOJ1072][SCOI2007] 排列prem

    Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为2的有30种,末位为4的有60种. Input ...

  9. 【BZOJ】1072: [SCOI2007]排列perm(状压dp+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1072 首先无限膜拜题解orz表示只会暴力orz 数据那么小我竟然想不到状压! orz 这种题可以取模 ...

  10. 【62.89%】【BZOJ 1072】[SCOI2007]排列perm

    Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 1862  Solved: 1171 [Submit][Status][Discuss] Descri ...

随机推荐

  1. Google Chrome(谷歌浏览器)安装使用

    谷歌浏览器官网https://www.google.cn/chrome/ Chrome是由Google开发的一款简单便捷的网页浏览工具.谷歌浏览器(Google Chrome)可以提帮助你快速.安全的 ...

  2. Android ViewPager2 + TabLayout + BottomNavigationView

    Android ViewPager2 + TabLayout + BottomNavigationView 实际案例 本篇主要介绍一下 ViewPager2 + TabLayout + BottomN ...

  3. 用 Java?试试国产框架 Solon v1.11.5(带视频)

    一个更现代感的 Java 应用开发框架:更快.更小.更自由.没有 Spring,没有 Servlet,没有 JavaEE:独立的轻量生态.主框架仅 0.1 MB. @Controller public ...

  4. java中继承的内存分析

    本文主要讲述java中继承的内存分析. 示例1,代码如下: public class EncapsulationTest { public static void main(String[] args ...

  5. xxl-job定时调度任务Java代码分析

    简介 用xxl-job做后台任务管理, 主要是快速解决定时任务的HA问题, 项目代码量不大, 功能精简, 没有特殊依赖. 因为产品中用到了这个项目, 上午花了点时间研究了一下运行机制. 把看到的记一下 ...

  6. C语言 根据掩码计算网段的起止ip

    原文地址:https://www.yuque.com/docs/share/85a26263-484a-42f6-880b-2b511ae1bd20?# 根据ipv4掩码计算 #include < ...

  7. [0x11] 130.火车进站问题【卡特兰数】

    题意 link(more:129.,P1044) 简化题意:给定严格从 \(1\thicksim n\) 这 \(n(n\leqslant 6\times10^4)\) 个整数,规定每个数都要进出栈各 ...

  8. 如何配置 SLO

    前言 无论是对外提供 IaaS PaaS SaaS 的云公司,还是提供信息技术服务的乙方公司,亦或是金融 制造等各行各业的数据中心.运维部门,我们的一个非常重要的合同承诺或考核评估指标就是:SLA(即 ...

  9. Solon Java Framework v1.12.0 发布

    一个更现代感的 Java 应用开发框架:更快.更小.更自由.没有 Spring,没有 Servlet,没有 JavaEE:独立的轻量生态.主框架仅 0.1 MB. @Controller public ...

  10. [python] 基于matplotlib实现树形图的绘制

    树形图Tree diagram (代码下载) 本文旨在描述如何使用Python实现基本的树形图.要实现这样的树形图,首先需要有一个数值矩阵.每一行代表一个实体(这里是一辆汽车).每列都是描述汽车的变量 ...