比赛链接

A

题解

知识点:贪心。

注意到 \(a[1] \neq 1\) , \(1\) 永远不可能换到前面;\(a[1] = 1\) 可以交换后面任意元素。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; int a[20];
bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> a[i];
if (a[1] == 1) cout << "YES" << '\n';
else cout << "NO" << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

B

题解

知识点:贪心,枚举。

分两类,一种是纯 \(1\) 或 \(0\) ,另一种是杂合。

显然后者的情况中,把所有数字全选了是最优的;前者枚举一下所有纯子串即可。两种情况,取最大值。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; bool solve() {
int n;
cin >> n;
string s;
cin >> s;
s = "?" + s;
int cnt0 = 0, cnt1 = 0;
for (int i = 1;i <= n;i++) {
if (s[i] == '0') cnt0++;
else cnt1++;
}
ll mx = 1LL * cnt0 * cnt1;
int i = 1, j = 1;
while (i <= n) {
while (j <= n && s[j] == s[i]) j++;
mx = max(mx, 1LL * (j - i) * (j - i));
i = j;
}
cout << mx << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

C

题解

知识点:构造。

注意到,只有 \(a=b\) 或者 \(a\) 每位都不等于 \(b\) 的对应位才可行。

考虑先把 \(a\) 串的 \(1\) 一个一个消掉,然后发现 \(b\) 会出现全 \(0\) 全 \(1\) 的情况,接下来分类讨论:

  1. 如果 \(a = b\) ,那么 \(a\) 中 \(1\) 为偶数时得到的 \(b\) 是 \(0\) ,否则是 \(1\) 。
  2. 如果 \(a\) 每位都不等于 \(b\) 的对应位 ,那么消掉一个 \(1\) 以后又会回到情况1,因此和情况 \(1\) 相反。

全是 \(0\) 直接可以结束,全是 \(1\) 可以先把 \([1,n]\) 取反,然后选择 \([1,1],[2,n]\) 即可。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; bool solve() {
int n;
cin >> n;
string a, b;
cin >> a >> b;
a = "?" + a;
b = "?" + b;
int cnt = 0;
for (int i = 1;i <= n;i++) cnt += a[i] == b[i];
if (cnt != 0 && cnt != n) return 0;
bool flag = cnt == n ? 0 : 1;
vector<pair<int, int>> ans;
for (int i = 1;i <= n;i++) {
if (a[i] == '1') {
ans.push_back({ i, i });
flag ^= 1;
}
}
if (flag) {
ans.push_back({ 1,n });
ans.push_back({ 1,1 });
ans.push_back({ 2,n });
}
cout << "YES" << '\n';
cout << ans.size() << '\n';
for (auto [i, j] : ans) cout << i << ' ' << j << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << "NO" << '\n';
}
return 0;
}

D

题解

知识点:质因数分解,容斥原理,数论。

题目要求我们每个 \(b_i\) 的方案数,然后得到总的方案数。

显然有 \(gcd(a_{i-1},b_i) = a_i\) ,注意到 \(a_i\) 必须是 \(a_{i-1}\) 的因子否则不可能得到答案,因此特判一下 \(a_{i} | a_{i-1}\) 。

于是,我们要找到所有的 \(b_i\) ,满足 \(gcd(\frac{a_{i-1}}{a_i},\frac{b_i}{a_i}) = 1\) 且 \(a_i | b_i\) ,其中 \(\frac{b_i}{a_i} \in [1,\frac{m}{a_i}]\) ,即我们从 \([1,\frac{m}{a_i}]\) 整数中找到和 \(\frac{a_{i-1}}{a_i}\) 互素的个数。

这是一个典型的容斥问题。先对 \(\frac{a_{i-1}}{a_i}\) 分解素因数,得到其素因子种类。我们先计算出区间中包含 \(\frac{a_{i-1}}{a_i}\) 因子的数的个数,注意奇加偶减,然后用总数 \(\frac{m}{a_i}\) 减去个数,即与之互素的数的个数,于是我们就得到了 \(b_i\) 的种类。

遍历每个 \(a_i\) 即可。

时间复杂度 \(O(n(\log a_i + 10\cdot 2^{10}))\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; const int mod = 998244353; int a[200007]; bool vis[100007];
int prime[100007];
int cnt;
void euler_screen(int n) {
for (int i = 2;i <= n;i++) {
if (!vis[i]) prime[++cnt] = i;
for (int j = 1;j <= cnt && i * prime[j] <= n;j++) {
vis[i * prime[j]] = 1;
if (!(i % prime[j])) break;//如果到了i的最小质因子就不用继续,因为接下去的数x一定能被(i,x)之间的数筛掉
}
}
}///欧拉筛,O(n),每个合数只会被最小质因子筛掉 bool solve() {
int n, m;
cin >> n >> m;
for (int i = 1;i <= n;i++) cin >> a[i];
int ans = 1;
for (int i = 2;i <= n;i++) {
if (a[i - 1] % a[i]) {
ans = 0;
break;
} int d = a[i - 1] / a[i];//不能出现的因子
int base = m / a[i];//包含a[i]的数个数 vector<int> ft;//对d分解因子种类
for (int j = 1;j <= cnt && prime[j] <= d / prime[j];j++) {
if (d % prime[j] == 0) ft.push_back(prime[j]);
while (d % prime[j] == 0) d /= prime[j];
}
if (d > 1) ft.push_back(d); int sum = 0;//容斥原理,求[1,base]中没有d中因子的数个数
for (int j = 1; j < (1 << ft.size()); j++) {
int mul = 1, feat = 0;
for (int k = 0; k < ft.size(); k++) {
if (j & (1 << k)) {
mul *= ft[k];
feat++;
}
}
if (feat & 1) sum = (sum + 1LL * base / mul % mod) % mod;
else sum = (sum - 1LL * base / mul % mod + mod) % mod;
}
sum = (base - sum + mod) % mod; ans = 1LL * ans * sum % mod;
}
cout << ans << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
euler_screen(100007);
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

CodeTON Round 3 (Div. 1 + Div. 2, Rated, Prizes!) A-D的更多相关文章

  1. Codeforces 1023 A.Single Wildcard Pattern Matching-匹配字符 (Codeforces Round #504 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Fi)

    Codeforces Round #504 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) A. Single Wildcard Patter ...

  2. CF Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined)

    1. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) B. Batch Sort    暴力枚举,水 1.题意:n*m的数组, ...

  3. Codeforces Beta Round #27 (Codeforces format, Div. 2)

    Codeforces Beta Round #27 (Codeforces format, Div. 2) http://codeforces.com/contest/27 A #include< ...

  4. Codeforces Round #438 (Div.1+Div.2) 总结

    本来兴致勃勃的想乘着这一次上紫,于是很早很早的到了机房 但是好像并没有什么用,反而rating-=47 Codeforces Round #438(Div.1+Div.2) 今天就这样匆匆的总结一下, ...

  5. Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-D. Restore Permutation-构造+树状数组

    Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-D. Restore Permutation-构造+树状数组 [Pro ...

  6. Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-C. Magic Grid-构造

    Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-C. Magic Grid-构造 [Problem Descripti ...

  7. Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-E. Let Them Slide-思维+数据结构

    Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-E. Let Them Slide-思维+数据结构 [Problem ...

  8. Codeforces Round #792 (Div. 1 + Div. 2) A-E

    Codeforces Round #792 (Div. 1 + Div. 2) A-E A 题目 https://codeforces.com/contest/1684/problem/A 题解 思路 ...

  9. Codeforces Round #792 (Div. 1 + Div. 2) // C ~ E

    比赛链接:Dashboard - Codeforces Round #792 (Div. 1 + Div. 2) - Codeforces C. Column Swapping 题意: 给定一个n*m ...

  10. 【codeforces】【比赛题解】#868 CF Round #438 (Div.1+Div.2)

    这次是Div.1+Div.2,所以有7题. 因为时间较早,而且正好赶上训练,所以机房开黑做. 然而我们都只做了3题.:(. 链接. [A]声控解锁 题意: Arkady的宠物狗Mu-mu有一只手机.它 ...

随机推荐

  1. 若依3.6.0使用Mybatis-plus分页失效以及完美替换Pagehelper

    一.前言 小编最近在经历后端框架的迁移,虽然不是小编来做,但是有个分页的情况让小编和一个同事去搞. 说一下小编这边的需求: 原来框架使用Mybatis-plus进行分页,要更换的新框架若依是使用Pag ...

  2. 文件分享工具ShareLocalFile不需要云盘的实时上传下载文件的云盘工具可以搜索整个网络的文件

    工具的下载地址:https://comm.zhaimaojun.cn/AllSources/ToolDetail/?tid=9693 这是一个未来的项目,可以分享我们的文件,目前由于个人的技术水平限制 ...

  3. 一,DRF入门规范

    一 Web应用模式 在开发Web应用中,有两种应用模式: 1.1 前后端不分离 1.2 前后端分离 二 API接口 为了在团队内部形成共识.防止个人习惯差异引起的混乱,我们需要找到一种大家都觉得很好的 ...

  4. 【java】学习路线11-四种权限修饰的测试

    package com.remoo.test;public class Learn09_Test{    private static String welcomeWord1 = "你好,p ...

  5. SFSafariViewController 加载的网页与原生oc之间的交互

    问题描述: 工作中碰到这样一种场景, WebApp 已经实现了IM即时通讯及基于WebRTC实现的音视频会议,音视频聊天. 也是半路接手的项目,项目整体是使用WKWebView套壳加载h5 页面实现( ...

  6. Centos_yum使用

    安装应用 yum install -y xxx -y 表示自动yes 卸载应用 yum -y remove xxx -y 表示自动yes 查看已安装的应用 yum list installed

  7. 对表白墙wxml文件解释

    一.index.wxml 1.代码 1 <view class="Beijingse" style="height: 100%;"> 2 <v ...

  8. Java 中HashMap 详解

    本篇重点: 1.HashMap的存储结构 2.HashMap的put和get操作过程 3.HashMap的扩容 4.关于transient关键字 HashMap的存储结构 1. HashMap 总体是 ...

  9. LVGL 模拟仿真(Windows+CodeBlocks)

    一.准备材料 Code Blocks官网:https://www.codeblocks.org/ Code Blocks 汉化包:链接: https://pan.baidu.com/s/12zB5bD ...

  10. Django 聚合查询 分组查询 F与Q查询

    一.聚合查询 需要导入模块:from django.db.models import Max, Min, Sum, Count, Avg 关键语法:aggregate(聚合结果别名 = 聚合函数(参数 ...