前言

今天和大家一起分享如何使用LabVIEW调用pb模型实现物体识别,本博客中使用的智能工具包可到主页置顶博客LabVIEW AI视觉工具包(非NI Vision)下载与安装教程中下载

一、物体识别算法原理概述

1、物体识别的概念

物体识别也称目标检测,目标检测所要解决的问题是目标在哪里以及其状态的问题。但是,这个问题并不是很容易解决。形态不合理,对象出现的区域不确定,更不用说对象也可以是多个类别。

目标检测用的比较多的主要是RCNN,spp- net,fast- rcnn,faster- rcnn;YOLO系列,如YOLOV3和YOLOV4;除此之外还有SSD,ResNet等。

2、Yolo算法原理概述

Yolo的识别原理简单清晰。对于输入的图片,将整张图片分为7×7(7为参数,可调)个方格。当某个物体的中心点落在了某个方格中,该方格则负责预测该物体。每个方格会为被预测物体产生2(参数,可调)个候选框并生成每个框的置信度。最后选取置信度较高的方框作为预测结果。

二、opencv调用darknet物体识别模型(yolov3/yolov4)

相关源码及模型在darknt文件夹下

使用darknet训练yolo的模型,生成weights文件。使用opencv调用生成的模型

1、darknet模型的获取

文件含义:

  • cfg文件:模型描述文件

  • weights文件:模型权重文件

Yolov3获取链接:

https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg

https://pjreddie.com/media/files/yolov3.weights

Yolov4获取链接:

https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.cfg

https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights

2、python调用darknet模型实现物体识别

(1)dnn模块调用darknet模型

net = cv2.dnn.readNetFromDarknet("yolov3/yolov3.cfg", "yolov3/yolov3.weights")

(2)获取三个输出端的LayerName

使用getUnconnectedOutLayer获取三个只有输入,没有输出的层的名字,Yolov3的三个输出端层名为:['yolo_82', 'yolo_94', 'yolo_106']

def getOutputsNames(net):
   # Get the names of all the layers in the network
   layersNames = net.getLayerNames()
   # Get the names of the output layers, i.e. the layers with unconnected outputs
   return [layersNames[i - 1] for i in net.getUnconnectedOutLayers()]

(3)图像预处理

使用blobFromImage将图像转为image Size=(416,416)或(608,608) Scale=1/255 Means=[0,0,0]

blob = cv2.dnn.blobFromImage(frame, 1/255, (416, 416), [0,0,0], 1, crop=False)

(4)推理

使用net.forward(multiNames)获取多个层的结果,其中getOutputsNames(net)=['yolo_82', 'yolo_94', 'yolo_106']

net.setInput(blob)
outs = net.forward(getOutputsNames(net))

(5)后处理(postrocess)

获取的结果(outs)里面有三个矩阵(out),每个矩阵的大小为85*n,n表示检测到了n个物体,85的排列顺序是这样的:

  • 第0列代表物体中心x在图中的位置(0~1)

  • 第1列表示物体中心y在图中的位置(0~1)

  • 第2列表示物体的宽度

  • 第3列表示物体的高度

  • 第4列是置信概率,值域为[0-1],用来与阈值作比较决定是否标记目标

  • 第5~84列为基于COCO数据集的80分类的标记权重,最大的为输出分类。使用这些参数保留置信度高的识别结果(confidence>confThreshold)

def postprocess(frame, outs):
   frameHeight = frame.shape[0]
   frameWidth = frame.shape[1]
   classIds = []
   confidences = []
   boxes = []
   classIds = []
   confidences = []
   boxes = []
   for out in outs:
       for detection in out:
           scores = detection[5:]
           classId = np.argmax(scores)
           confidence = scores[classId]
           if confidence > confThreshold:
               center_x = int(detection[0] * frameWidth)
               center_y = int(detection[1] * frameHeight)
               width = int(detection[2] * frameWidth)
               height = int(detection[3] * frameHeight)
               left = int(center_x - width / 2)
               top = int(center_y - height / 2)
               classIds.append(classId)
               confidences.append(float(confidence))
               boxes.append([left, top, width, height])
   print(boxes)
   print(confidences)

(6)后处理(postrocess)

使用NMSBoxes函数过滤掉重复识别的区域。

    indices = cv.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold)  
   for i in indices:
       box = boxes[i]
       left = box[0]
       top = box[1]
       width = box[2]
       height = box[3]
       drawPred(classIds[i], confidences[i], left, top, left + width, top + height)

(7)画出检测到的对象

def drawPred(classId, conf, left, top, right, bottom):
   # Draw a bounding box.
   cv.rectangle(frame, (left, top), (right, bottom), (0, 0, 255))
   
   label = '%.2f' % conf
       
   # Get the label for the class name and its confidence
   if classes:
       assert(classId < len(classes))
       label = '%s:%s' % (classes[classId], label)    #Display the label at the top of the bounding box
   labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
   top = max(top, labelSize[1])
   cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255))

(8)完整源码及检测结果(cv_call_yolo.py)

import cv2
cv=cv2
import numpy as np
import time
net = cv2.dnn.readNetFromDarknet("yolov3/yolov3.cfg", "yolov3/yolov3.weights")
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)

confThreshold = 0.5  #Confidence threshold
nmsThreshold = 0.4   #Non-maximum suppression threshold
frame=cv2.imread("dog.jpg")
classesFile = "coco.names";
classes = None
with open(classesFile, 'rt') as f:
   classes = f.read().rstrip('\n').split('\n')

def getOutputsNames(net):
   # Get the names of all the layers in the network
   layersNames = net.getLayerNames()
   # Get the names of the output layers, i.e. the layers with unconnected outputs
   return [layersNames[i - 1] for i in net.getUnconnectedOutLayers()]
print(getOutputsNames(net))
# Remove the bounding boxes with low confidence using non-maxima suppression

def postprocess(frame, outs):
   frameHeight = frame.shape[0]
   frameWidth = frame.shape[1]
   classIds = []
   confidences = []
   boxes = []
   # Scan through all the bounding boxes output from the network and keep only the
   # ones with high confidence scores. Assign the box's class label as the class with the highest score.
   classIds = []
   confidences = []
   boxes = []
   for out in outs:
       for detection in out:
           scores = detection[5:]
           classId = np.argmax(scores)
           confidence = scores[classId]
           if confidence > confThreshold:
               center_x = int(detection[0] * frameWidth)
               center_y = int(detection[1] * frameHeight)
               width = int(detection[2] * frameWidth)
               height = int(detection[3] * frameHeight)
               left = int(center_x - width / 2)
               top = int(center_y - height / 2)
               classIds.append(classId)
               confidences.append(float(confidence))
               boxes.append([left, top, width, height])    # Perform non maximum suppression to eliminate redundant overlapping boxes with
   # lower confidences.
   print(boxes)
   print(confidences)  
   indices = cv.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold)
   for i in indices:
       #print(i)
       #i = i[0]
       box = boxes[i]
       left = box[0]
       top = box[1]
       width = box[2]
       height = box[3]
       drawPred(classIds[i], confidences[i], left, top, left + width, top + height)

   # Draw the predicted bounding box
def drawPred(classId, conf, left, top, right, bottom):
   # Draw a bounding box.
   cv.rectangle(frame, (left, top), (right, bottom), (0, 0, 255))
   label = '%.2f' % conf    
   # Get the label for the class name and its confidence
   if classes:
       assert(classId < len(classes))
       label = '%s:%s' % (classes[classId], label)
   #Display the label at the top of the bounding box
   labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
   top = max(top, labelSize[1])
   cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255))
blob = cv2.dnn.blobFromImage(frame, 1/255, (416, 416), [0,0,0], 1, crop=False)
t1=time.time()
net.setInput(blob)
outs = net.forward(getOutputsNames(net))
print(time.time()-t1)
postprocess(frame, outs)
t, _ = net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
cv2.imshow("result",frame)

3、LabVIEW调用darknet模型实现物体识别yolo_example.vi

(1)LabVIEW调用yolov3的方式及步骤和python类似,源码如下所示: 将带识别图片与yolo_example.vi置于同一路径下,即可进行物体识别

(2)识别结果如下:

4、LabVIEW实现实时摄像头物体识别(yolo_example_camera.vi)

(1)使用GPU加速

使用顺序结构检测神经网络推理的时间

比较使用GPU和不使用GPU两种情况下的推理速度

普通模式:net.serPerferenceBackend(0),net.serPerferenceTarget(0)

Nvidia GPU模式:net.serPreferenceBackend(5), net.serPerferenceTarget(6)

注:普通的c++、python、LabVIEW版本的opencv,即便选了GPU模式也没用,程序仍然运行在CPU上,需要安装CUDA和CUDNN后重新从源码编译opencv

(2)程序源码如下:

(3)物体识别结果如下:

注意,使用如上程序,可以点击STOP按钮,停止本次物体识别,也可勾选使用GPU进行加速

(4)使用GPU加速结果:

三、tensorflow的物体识别模型调用

相关源码及模型在tf1文件夹下

1、下载预训练模型并生成pbtxt文件

(1)下载ssd_mobilenet_v2_coco,下载地址如下: http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v2_coco_2018_03_29.tar.gz

(2)解压后的文件内容

(3)根据pb模型生成pbtxt文件 运行 tf_text_graph_ssd.py以生成pptxt文件 在cmd中运行: python tf_text_graph_ssd.py --input ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb --config ssd_mobilenet_v1_coco_2017_11_17/ssd_mobilenet_v1_coco.config --output ssd_mobilenet_v1_coco_2017_11_17.pbtxt

2、LabVIEW调用tensorflow模型推理并实现物体识别(callpb.vi)

(1)程序源码如下:

(2)运行结果如下:

四、项目源码及模型下载

链接:https://pan.baidu.com/s/1zwbLQe0VehGhsqNIHyaFRw?pwd=8888 提取码:8888

总结拓展

可以使用Yolov3训练自己的数据集,具体训练方法可参考博客:https://blog.csdn.net/qq_38915710/article/details/97112788 可实现案例:口罩佩戴识别、肺炎分类、CT等,如口罩佩戴检测

更多关于LabVIEW与人工智能技术,可添加技术交流群进一步探讨。qq群号:705637299,请备注暗号:LabVIEW 机器学习

 

手把手教你使用LabVIEW OpenCV dnn实现物体识别(Object Detection)含源码的更多相关文章

  1. 手把手教你使用LabVIEW OpenCV DNN实现手写数字识别(含源码)

    @ 目录 前言 一.OpenCV DNN模块 1.OpenCV DNN简介 2.LabVIEW中DNN模块函数 二.TensorFlow pb文件的生成和调用 1.TensorFlow2 Keras模 ...

  2. 手把手教你使用LabVIEW OpenCV dnn实现图像分类(含源码)

    @ 目录 前言 一.什么是图像分类? 1.图像分类的概念 2.MobileNet简介 二.使用python实现图像分类(py_to_py_ssd_mobilenet.py) 1.获取预训练模型 2.使 ...

  3. 手把手教你如何用 OpenCV + Python 实现人脸识别

    下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特 ...

  4. 【YOLOv5】手把手教你使用LabVIEW ONNX Runtime部署 TensorRT加速,实现YOLOv5实时物体识别(含源码)

    前言 上一篇博客给大家介绍了LabVIEW开放神经网络交互工具包[ONNX],今天我们就一起来看一下如何使用LabVIEW开放神经网络交互工具包实现TensorRT加速YOLOv5. 以下是YOLOv ...

  5. 【YOLOv5】LabVIEW+YOLOv5快速实现实时物体识别(Object Detection)含源码

    前言 前面我们给大家介绍了基于LabVIEW+YOLOv3/YOLOv4的物体识别(对象检测),今天接着上次的内容再来看看YOLOv5.本次主要是和大家分享使用LabVIEW快速实现yolov5的物体 ...

  6. 手把手教你使用LabVIEW人工智能视觉工具包快速实现传统Opencv算子的调用(含源码)

    前言 今天我们一起来使用LabVIEW AI视觉工具包快速实现图像的滤波与增强:图像灰度处理:阈值处理与设定:二值化处理:边缘提取与特征提取等基本操作.工具包的安装与下载方法可见之前的博客. 一.图像 ...

  7. 手把手教你使用LabVIEW实现Mask R-CNN图像实例分割

    前言 前面给大家介绍了使用LabVIEW工具包实现图像分类,目标检测,今天我们来看一下如何使用LabVIEW实现Mask R-CNN图像实例分割. 一.什么是图像实例分割? 图像实例分割(Instan ...

  8. 手把手教你使用LabVIEW人工智能视觉工具包快速实现图像读取与采集(含源码)

    目录 前言 一.工具包位置 二.图像采集与色彩空间转换 1.文件读写 2.实现图片读取 3.使用算子cvtColor实现颜色空间转换 三.从摄像头采集图像 1.Camera类 2.属性节点 3.实现摄 ...

  9. 10分钟学会使用YOLO及Opencv实现目标检测(下)|附源码

    将YOLO应用于视频流对象检测 首先打开 yolo_video.py文件并插入以下代码: # import the necessary packages import numpy as np impo ...

随机推荐

  1. 从matlab的bwmorph函数的'majority'参数中扩展的一种二值图像边缘光滑的实时算法。

    在matlab的图像处理工具箱中,有一系列关于Binary Images的处理函数,都是以字母bw开头的,其中以bwmorph函数选项最为丰富,一共有'bothat'.'branchpoints'.' ...

  2. LevelSequence源码分析

    前言 这篇文章主要讲的是Unreal LevelSequence RunTime的部分.即在游戏中运行Level Sequence的源码解析.(而且抛去Replicated 的Sequence,一般S ...

  3. linux学习随笔

    date +%Y-%m-%d\ %H:%M:%S cal 10 2009 yum install bc //计算器 bc 安装thefuck yum install gcc gcc++ python ...

  4. 基于Vue.js2.6结合h5来实现视频播放画中画技术(Picture-in-Picture)

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_125 在开发基于vue.js的在线视频教育平台的时候,我们会注意一个小问题,就是如果用户在观看播放视频的同时,也会往下拖动窗口浏览 ...

  5. Python爬虫:为什么你爬取不到网页数据

    前言: 之前小编写了一篇关于爬虫为什么爬取不到数据文章(文章链接为:Python爬虫经常爬不到数据,或许你可以看一下小编的这篇文章), 但是当时小编也是胡乱编写的,其实里面有很多问题的,现在小编重新发 ...

  6. Apache DolphinScheduler ASF 孵化器毕业一周年,汇报来了!

    不知不觉,Apache DolphinScheduler 已经从 Apache 软件基金会(以下简称 ASF)孵化器毕业一年啦! 北京时间 2021 年 4 月 9 日,ASF 官方宣布 Apache ...

  7. JVM 系列(4)一看就懂的对象内存布局

    请点赞关注,你的支持对我意义重大. Hi,我是小彭.本文已收录到 GitHub · AndroidFamily 中.这里有 Android 进阶成长知识体系,有志同道合的朋友,关注公众号 [彭旭锐] ...

  8. 高效能团队的Java研发规范(进阶版)

    目前大部分团队是使用的阿里巴巴Java开发规范,不过在日常开发中难免遇到覆盖不到的场景,本文在阿里巴巴Java开发规范基础上,补充一些常用的规范,用于提升代码质量及增强代码可读性. 编程规约 1.基础 ...

  9. DevOps落地实践点滴和踩坑记录-(2) -聊聊平台建设

    很久没有写文章记录了,上一篇文章像流水账一样,把所见所闻一个个记录下来.这次专门聊聊DevOps平台的建设吧,有些新的体会和思考,希望给正在做这个事情的同学们一些启发吧. DevOps落地实践点滴和踩 ...

  10. [开源精品] C#.NET im 聊天通讯架构设计 -- FreeIM 支持集群、职责分明、高性能

    FreeIM 是什么? FreeIM 使用 websocket 协议实现简易.高性能(单机支持5万+连接).集群即时通讯组件,支持点对点通讯.群聊通讯.上线下线事件消息等众多实用性功能. ImCore ...