吴恩达老师机器学习课程chapter11——大规模机器学习

本文是非计算机专业新手的自学笔记,高手勿喷。

本文仅作速查备忘之用,对应吴恩达(AndrewNg)老师的机器学期课程第十七章。

这是这次整理笔记的最后一次整理。

吴恩达老师的课程现在看来大部分很通俗易懂,但是代价就是缺少许多数学证明。

许多部分用来学习了解入门就比较合适,但是想要深究就不得不离开严格证明了,这就是这门课的局限了。

这门课后面还有一些没有整理,因为那部分更多是简单介绍,更缺少深入分析,就不整理了。



在进行大规模机器学习之前,应该先通过学习曲线判断是否需要增加更多的样本。

随机梯度下降(Stochastic gradient descent)

批量梯度下降法(Batch gradient descent):

“批量”是指每一次迭代都要考虑所有数据。

随机梯度下降法则避免了大规模累加操作,节省了时间。每一次迭代中只针对一个样本,每次都会改进一点。其优化轨迹并不总是指向最优解,会曲折迂回的向最优解收敛。

小批量梯度下降法(Mini-batch gradient descent)

与随机梯度法不一样的是,随机梯度法每次迭代只针对一个样本,而小批量梯度下降法每次针对一小组样本。

梯度下降是否收敛?

针对梯度下降法, 在实际工作中,可以通过绘图的方法查看是否收敛。

在随机梯度下降法中,举例来说,可以在每1000次迭代之后,计算前1000次的代价函数值,依次绘出函数图像,依次判断学习率大小是否合适。

可也以让学习率随着迭代增加而减少,保证收敛效果。

吴恩达老师机器学习课程chapter11——大规模机器学习的更多相关文章

  1. 机器学习爱好者 -- 翻译吴恩达老师的机器学习课程字幕 http://www.ai-start.com/

    机器学习爱好者 -- 翻译吴恩达老师的机器学习课程字幕 GNU Octave    开源  MatLab http://www.ai-start.com/ https://zhuanlan.zhihu ...

  2. 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响

    博主 撸的  该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...

  3. 跟我学算法-吴恩达老师(超参数调试, batch归一化, softmax使用,tensorflow框架举例)

    1. 在我们学习中,调试超参数是非常重要的. 超参数的调试可以是a学习率,(β1和β2,ε)在Adam梯度下降中使用, layers层数, hidden units 隐藏层的数目, learning_ ...

  4. 跟我学算法-吴恩达老师(mini-batchsize,指数加权平均,Momentum 梯度下降法,RMS prop, Adam 优化算法, Learning rate decay)

    1.mini-batch size 表示每次都只筛选一部分作为训练的样本,进行训练,遍历一次样本的次数为(样本数/单次样本数目) 当mini-batch size 的数量通常介于1,m 之间    当 ...

  5. 跟我学算法-吴恩达老师的logsitic回归

    logistics回归是一种二分类问题,采用的激活函数是sigmoid函数,使得输出值转换为(0,1)之间的概率 A = sigmoid(np.dot(w.T, X) + b ) 表示预测函数 dz ...

  6. 吴恩达《机器学习》课程笔记——第六章:Matlab/Octave教程

    上一篇  ※※※※※※※※  [回到目录]  ※※※※※※※※  下一篇 这一章的内容比较简单,主要是MATLAB的一些基础教程,如果之前没有学过matlab建议直接找一本相关书籍,边做边学,matl ...

  7. 吴恩达(Andrew Ng)——机器学习笔记1

    之前经学长推荐,开始在B站上看Andrew Ng的机器学习课程.其实已经看了1/3了吧,今天把学习笔记补上吧. 吴恩达老师的Machine learning课程共有113节(B站上的版本https:/ ...

  8. 吴恩达最新TensorFlow专项课程开放注册,你离TF Boy只差这一步

    不需要 ML/DL 基础,不需要深奥数学背景,初学者和软件开发者也能快速掌握 TensorFlow.掌握人工智能应用的开发秘诀. 以前,吴恩达的机器学习课程和深度学习课程会介绍很多概念与知识,虽然也会 ...

  9. 笔记:《机器学习训练秘籍》——吴恩达deeplearningai微信公众号推送文章

    说明 该文为笔者在微信公众号:吴恩达deeplearningai 所推送<机器学习训练秘籍>系列文章的学习笔记,公众号二维码如下,1到15课课程链接点这里 该系列文章主要是吴恩达先生在机器 ...

  10. Coursera课程《Machine Learning》吴恩达课堂笔记

    强烈安利吴恩达老师的<Machine Learning>课程,讲得非常好懂,基本上算是无基础就可以学习的课程. 课程地址 强烈建议在线学习,而不是把视频下载下来看.视频中间可能会有一些问题 ...

随机推荐

  1. 【9】java之static关键字

    一. static 定义属性 static 定义的属性和非 static 定义的属性有一个最大区别:所有的非 static 属性必须产生实例化对象之后才可以访问,static 定义的属性不受此限制.也 ...

  2. linux安装grafana成功后,登录成功,几天后无法访问

    页面提示: 解决方法: 扩展磁盘空间 检查浏览器版本:升级浏览器版本

  3. C语言中static关键字用法

    概述 static关键字在c语言中比较常用,使用恰当能够大大提高程序的模块化特性,有利于扩展和维护. 在程序中使用static 变量 1. 局部变量 普通局部变量是再熟悉不过的变量了,在任何一个函数内 ...

  4. 安装centos,ubuntu系统

    安装centos系统 1.首先进入VMware,新建虚拟机,选择典型,然后下一步 2.稍后安装系统,下一步 3.因为此次安装的是centos7.9系统,因此版本选择7 64位,下一步 4.选择虚拟机的 ...

  5. LP1-4:功能图分析方法(白盒测试)

  6. 解决多行文本超出显示省略号webpack打包后失效的问题

    开发环境没问题: 但是在打包部署后就失效了: 经过对比后发现是因为: 缺少了 -webkit-box-orient: vertical;  导致 解决方案 : /* ! autoprefixer: o ...

  7. mysql修改密码遇到的问题

    在docker上安装了 mysql 容器,mysql镜像是8.0+版本 修改密码语句: 只针对本机生效 alter user "root"@'localhost' identifi ...

  8. jinkens设置工作主目录

    linux下,默认jenkins的主目录,位于当前用户下的.jenkins目录,需要自定义该目录位置的时候,可以通过设定环境变量 JENKINS_HOME 然后重启jenkins nohup java ...

  9. kafak学习总结

    高可用 多副本机制: 主副本和从副本,从副本只负责同步主副本数据,只有主副本进行读写. 高并发 网络结构设计 多路复用 多selector -> 多线程-> 多队列 高性能 写 把数据先写 ...

  10. Go组件库总结之无等待锁

    本篇文章我们用Go封装一个无等待锁库.文章参考自:https://github.com/brewlin/net-protocol 1.锁的封装 type Mutex struct { v int32 ...