容斥 + 矩形面积并 + 状压dp

B-Blocks_第46届ICPC亚洲区域赛(昆明)(正式赛) (nowcoder.com)

题意

给出一个矩形A \((0,0),(W,H)\), 给出 \(n\;(1<=n<=10)\) 个矩形 \((x_1,y_1),(x_2,y_2)\) (坐标分别为左下角,右上角)

每次在这 n 个矩形中等概率选择 1 个,给这个区域涂色,求能将 A 区域完全涂满的期望次数

思路

  1. 看数据范围可知可能是状压dp,且因为是期望dp,倒推

  2. 设状态 \(s\) 为已经涂过色的区域,如 101 表示第 0,2 个区域被涂过了

    \(f[s]\) 表示从 \(s\) 开始,还要期望几次能涂满 A

    转移:枚举 \(s\) 中 0 的位置 i,并且记录共有 cnt 个

    ​ \(now+=f[s|2^i]\)

    ​ \(f[s]=\frac {1}n*now+\frac {n-cnt}n*f[s]\)

  3. 现在的问题是求出 dp 的起点,即有哪些状态是已经把 A 涂满的,记为 \(f[s]=0\)

    求若干矩形的面积并是否能覆盖 A,但并集不好处理,可以先求出 \(And[s]\) 表示 \(s\) 集合的面积交,用容斥求出面积并 \(Or[s]\)

    通过 \(And[s]\) 求 \(Or[s]\) 的过程可以枚举子集,\(O(3^n)\)

代码

#include <bits/stdc++.h>
using namespace std;
#define endl "\n" typedef long long ll;
typedef pair<int, int> PII;
const int N = 10;
const int mod = 998244353;
int n;
struct Node
{
ll x1, y1;
ll x2, y2;
}a[N]; ll inv[N];
ll f[1 << N];
ll And[1 << N], Or[1 << N];
ll H, W; ll qmi(ll a, ll b)
{
ll ans = 1;
while(b)
{
if (b & 1)
ans = ans * a % mod;
b >>= 1;
a = a * a % mod;
}
return ans % mod;
} void presolve()
{
for (int i = 1; i <= n; i++)
inv[i] = qmi(i, mod - 2);
for (int s = 0; s < 1 << n; s++)
{
ll X1 = 0, Y1 = 0, X2 = W, Y2 = H;
for (int i = 0; i < n; i++)
{
if (!(s >> i & 1))
continue;
auto [x1, y1, x2, y2] = a[i];
X1 = max(X1, x1), Y1 = max(Y1, y1);
X2 = min(X2, x2), Y2 = min(Y2, y2);
}
And[s] = max(0ll, X2 - X1) * max(0ll, Y2 - Y1);
}
for (int s = 0; s < 1 << n; s++)
{
Or[s] = 0;
for (int ns = s; ns; ns = (ns - 1) & s)
Or[s] += And[ns] * (__builtin_parity(ns) ? 1 : -1);
}
} void solve()
{
ll tot = H * W;
if (Or[(1 << n) - 1] < tot)
{
cout << -1 << endl;
return;
}
for (int s = (1 << n) - 1; s >= 0; s--)
{
if (Or[s] == tot)
{
f[s] = 0;
continue;
}
ll now = n, cnt = 0;
for (int i = 0; i < n; i++)
{
if (s >> i & 1)
continue;
now = (now + f[s | (1 << i)]) % mod;
cnt++;
}
f[s] = now * inv[cnt] % mod;
}
cout << f[0] << endl;
} int main()
{
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int T;
cin >> T;
while(T--)
{
cin >> n;
cin >> H >> W;
for (int i = 0; i < n; i++)
cin >> a[i].x1 >> a[i].y1 >> a[i].x2 >> a[i].y2;
presolve();
solve();
}
return 0;
}

2021昆明B的更多相关文章

  1. codevs 2021 中庸之道

    2021 中庸之道  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description 给定一个长度为N的序列,有Q次询问,每次 ...

  2. Bzoj 1982: [Spoj 2021]Moving Pebbles 博弈论

    1982: [Spoj 2021]Moving Pebbles Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 130  Solved: 88[Submi ...

  3. poj 2021 Relative Relatives(暴力)

    题目链接:http://poj.org/problem?id=2021 思路分析:由于数据较小,采用O(N^2)的暴力算法,算出所有后代的年龄,再排序输出. 代码分析: #include <io ...

  4. 细谈昆明SEO市场

    就在前几天,以前的同事跟我说,现在昆明SEO市场真的是烂到不行,每家公司在招SEO这个方向的时候,给到的工资都很低,接着这几天闲来无事,就在某个招聘平台上注册了个账号,投了将近100份简历,专门去面试 ...

  5. iPhone屏蔽IOS更新、iPhone系统更新的提示(免越狱,有效期更新至2021年)

    iPhone屏蔽IOS更新.iPhone系统更新的提示(免越狱,有效期更新至2021年) 1.在Safari浏览器中粘贴如下链接,按提示打开链接. 输入http://apt.dataage.pub 2 ...

  6. HDU 2021 发工资咯:)

    http://acm.hdu.edu.cn/showproblem.php?pid=2021 Problem Description 作为杭电的老师,最盼望的日子就是每月的8号了,因为这一天是发工资的 ...

  7. Math.abs(~2020) 按位取反后的绝对值是多少 2021, 按位取反后,比正数多1

    Math.abs(~2020)  按位取反后的绝对值是多少 2021, 按位取反后,比正数多1 int 值的取值 范围:   -128 ---  127   之间, 0000 0000     按位取 ...

  8. 部分PR回写的数量带有小数,分别是2023工厂的纸箱104007000389,2021工厂的纸盒404002005930;

    描述:部分PR回写的数量带有小数,分别是2023工厂的纸箱104007000389,2021工厂的纸盒404002005930: 原因:所有物料规划PR时对舍入值的先后考虑逻辑影响到回写出来的temp ...

  9. codves 2021中庸之道

    2021 中庸之道 http://codevs.cn/problem/2021/ 题目描述 Description 给定一个长度为N的序列,有Q次询问,每次询问区间[L,R]的中位数. 数据保证序列中 ...

  10. HDU 2021 发工资咯:)(最水贪心)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2021 发工资咯:) Time Limit: 2000/1000 MS (Java/Others)    ...

随机推荐

  1. Jmeter 之吞吐量控制器

    作用: 吞吐量控制器可用来模拟混合场景的压测业务,即一部分用户执行场景A,一部分用户执行场景B 字段说明: Total Excutions:执行请求总数 Percent Excutions:执行线程数 ...

  2. Jmeter 之提取的值为null时,if控制器中的判断表达式

    场景:当level的值为null时则执行 {"code":0, "msg":null, "data": [ { "level&qu ...

  3. 对Asp.net WebApi中异步(async+await)接口实际使用及相关思考(示例给出了get,post,提交文件,异步接口等实践).

    [很多初学者的疑问] 为何作为web api这样的天然的并发应用,还需要在controller的action上声明使用async这些呢? <参考解答> 在 web 服务器上,.NET Fr ...

  4. NC14501 大吉大利,晚上吃鸡!

    题目链接 题目 题目描述 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏. 在游戏中,皮皮和毛毛最喜欢做的事情就是堵桥,每每有一个好时机都能收到不少的 ...

  5. VMware安装linux系统CentOs7.4 mini版过程

    创建虚拟机 新建虚拟机 选择虚拟机的操作系统,本文中安装的CentOS属于linux 设置虚拟机的名称和虚拟机所使用的文件再物理机中的路径, 设置虚拟机的cup数量和核心数量,如果设置的不合适可以再创 ...

  6. Zabbix与乐维监控对比分析(八)——其他功能篇

    前面我们详细介绍了Zabbix与乐维监控的架构与性能.Agent管理.自动发现.权限管理.对象管理.告警管理.可视化.图形图表及网络功能方面的对比分析,接下来我们将对二者其他功能进行对比分析. 本篇是 ...

  7. MySQL 删除数据 批量删除(大量)数据

    在删除数据的时候根据不同的场景使用不同的方法,比如说删除表中部分数据.删除表的结构.删除所有记录并重置自增ID.批量删除大量数据等,可以使用delete.truncate.drop等语句. 一.方法分 ...

  8. io流概述-一切皆为字节

    io流概述 什么是io 生活中,你肯定经历过这样的场景.当你编辑一个文本文件,忘记了ctrl+s,可能文件就白白编辑了当你电脑上插入一个U盘,可以把一个视频,拷贝到你的电脑硬盘里.那么数据都是在哪些设 ...

  9. 顶层QWidget弹窗设置背景为透明,透明部分为黑色。

    setAttribute(Qt::WA_TranslucentBackground); 设置此属性,解决.

  10. 基于AS2协议的EDI 系统

    一款由JAVA语言开发的基于AS2 协议的EDI 轻量级系统 优点如下: 1.价格便宜.目前市场上一条gateway线路动辄数万,甚至数万/年. 2.功能强大.功能可以与主流EDI 软件媲美. 3.可 ...