Counting rectangles

By counting carefully it can be seen that a rectangular grid measuring 3 by 2 contains eighteen rectangles:

Although there exists no rectangular grid that contains exactly two million rectangles, find the area of the grid with the nearest solution.


数长方形

如果数得足够仔细,能看出在一个3乘2的长方形网格中包含有18个不同大小的长方形,如下图所示:

尽管没有一个长方形网格中包含有恰好两百万个长方形,但有许多长方形网格中包含的长方形数目接近两百万,求其中最接近这一数目的长方形网格的面积

解题

参考博客

有下面内容:

对于任意矩形M*N

其中1*1的矩阵有M*N个

1*2的矩阵有M*(N-1)个

2*1的矩阵有(M-1)*N个

实际上只要确定小矩阵左上角顶点在大矩形中的位置,这个矩阵的位置就唯一确定了

所有在任意矩形M*N中,矩阵i*j有(M-i+1)*(N-j+1)个

所以对于M*N的矩阵总的矩阵数量是:

        int num = 0;
for(int i =1;i<= m;i++){
for(int j =1;j<= n;j++){
num += (m-i + 1)*(n - j+1);
}
}

更让人想不到是是直接计算矩阵的数量:

num = (m+1)*m*(n+1)*n/4

Java

package Level3;
import java.util.Random; public class PE085{ static void run() {
int limit = 100;
int close = Integer.MAX_VALUE;
int area = 0;
for(int m =1;m< limit ;m++){
for(int n = 1;n< limit ;n++){
int num = grid_num(m,n);
if (num>2000000)
break;
if( Math.abs(num - 2000000 ) < Math.abs(close - 2000000)){
close = num;
area = n*m;
}
}
}
System.out.println(area);
}
public static int grid_num2(int m , int n){
int num = 0;
num = (m+1)*m*(n+1)*n/4;
return num;
}
// 2772
// running time=0s0ms
public static int grid_num(int m , int n){
int num = 0;
for(int i =1;i<= m;i++){
for(int j =1;j<= n;j++){
num += (m-i + 1)*(n - j+1);
}
}
return num;
}
// 2772
// running time=0s20ms public static void main(String[] args){
long t0 = System.currentTimeMillis();
run();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms");
}
}

你说是不是很流氓,这个规律,我怎么那么聪慧的会发现?

Python

# coding=gbk
import time as time t0 = time.time() def run():
limit = 100
close = 0
area = 0
for m in range(1,limit):
for n in range(1,limit):
num = grid_num(m,n)
if num>2000000:break
if abs(num - 2000000) < abs(close -2000000):
close = num
area = n*m
print area def grid_num(m ,n):
count = 0
for i in range(1,m+1):
for j in range(1,n+1):
count += (m-i+1)*(n-j+1)
return count run()
t1 = time.time()
print "running time=",(t1-t0),"s" #
# running time= 1.19499993324 s

Project Euler 85 :Counting rectangles 数长方形的更多相关文章

  1. Project Euler 19 Counting Sundays( 蔡勒公式计算星期数 )

    题意:在二十世纪(1901年1月1日到2000年12月31日)中,有多少个月的1号是星期天? 蔡勒公式:计算 ( year , month , day ) 是星期几 以下图片仅供学习! /****** ...

  2. project euler 19: Counting Sundays

    import datetime count = 0 for y in range(1901,2001): for m in range(1,13): if datetime.datetime(y,m, ...

  3. Python练习题 040:Project Euler 012:有超过500个因子的三角形数

    本题来自 Project Euler 第12题:https://projecteuler.net/problem=12 # Project Euler: Problem 12: Highly divi ...

  4. Python练习题 045:Project Euler 017:数字英文表达的字符数累加

    本题来自 Project Euler 第17题:https://projecteuler.net/problem=17 ''' Project Euler 17: Number letter coun ...

  5. Python练习题 030:Project Euler 002:偶数斐波那契数之和

    本题来自 Project Euler 第2题:https://projecteuler.net/problem=2 # Each new term in the Fibonacci sequence ...

  6. [project euler] program 4

    上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...

  7. Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.

    In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentago ...

  8. 【Project Euler 8】Largest product in a series

    题目要求是: The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × ...

  9. Python练习题 048:Project Euler 021:10000以内所有亲和数之和

    本题来自 Project Euler 第21题:https://projecteuler.net/problem=21 ''' Project Euler: Problem 21: Amicable ...

随机推荐

  1. OpenSSL 安全漏洞: heartbleed

    Heartbleed 是 2014年4月7日被广泛报道的一个 OpenSSL 安全漏洞,号称是灾难. 利用它能读取服务器上最多64k的内存,只要该服务器可以通过ssl连接.   Heartbleed ...

  2. Unity3d 动态批处理的问题

    这段时间做unity3d的优化,主要的入手是减少draw call.    1.代码上主要是把一些零碎的同材质的合并成一个大的mesh.    2.减少不必要的全屏后期处理.把摄像机的renderin ...

  3. Jquery插件收集

    移动端滚动条插件iScroll.js http://www.cnblogs.com/starof/p/5215845.html http://www.codeceo.com/article/35-jq ...

  4. linux安装IPython四种方法

    IPython是Python的交互式Shell,提供了代码自动补完,自动缩进,高亮显示,执行Shell命令等非常有用的特性.特别是它的代码补完功能,例如:在输入zlib.之后按下Tab键,IPytho ...

  5. python 字典内置方法get应用

    python字典内置方法get应用,如果我们需要获取字典值的话,我们有两种方法,一个是通过dict['key'],另外一个就是dict.get()方法. 今天给大家分享的就是字典的get()方法. 这 ...

  6. WPF学习05:2D绘图 使用Transform进行控件变形

    在WPF学习04:2D绘图 使用Shape绘基本图形中,我们了解了如何绘制基本的图形. 这一次,我们进一步,研究如何将图形变形. 例子 一个三角形,经Transform形成组合图形: XAML代码: ...

  7. html onclick 传参数

    <a id="j-im" class="jd-im btn-gray gys-im" href="javascript:(0);" o ...

  8. Python - python不是内部或外部命令

    [方法一]我的电脑->属性->高级->环境变量->系统变量   在系统变量里找到PATH,双击PATH,在结尾加上 ";C:\Python26"(不要引号) ...

  9. 【BZOJ 1068】[SCOI2007]压缩

    Description 给 一个由小写字母组成的字符串,我们可以用一种简单的方法来压缩其中的重复信息.压缩后的字符串除了小写字母外还可以(但不必)包含大写字母R与M,其中M 标记重复串的开始,R重复从 ...

  10. VBS基础篇 - 队列

    VBS中的队列需要使用System.Collections.Queue '建立队列 Dim Que : Set Que = CreateObject("System.Collections. ...