(Schur's Theorem) If $A$ is positive, then $$\bex \per(A)\geq \det A. \eex$$

Solution. By Exercise I.2.2, $A=T^*T$ for some upper triangular $T$ with non-negative diagonals. Thus $$\beex \bea \det A&=\det T^*\cdot \det T\\ &=\per T^*\cdot \per T\\ &=\per(T^*I)\cdot \per(I\cdot T)\\ &\leq \sqrt{\per(T^*T)\cdot \per (I^*I)}\cdot \sqrt{\per(II^*)\cdot \per (T^*T)}\\ &=\per(T^*T)\\ &=\per(A). \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.9的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 2016 系统设计第一期 (档案一)MVC a标签 跳转 Html.ActionLink的用法

    html: <a class="J_menuItem" href="baidu.com">权限管理</a> cshtml: 原有样式: ...

  2. EXTJS 4.2 资料 控件之Grid 行编辑绑定下拉框,并点一次触发一次事件

    主要代码: { header: '属性值', dataIndex: 'PropertyValueName', width: 130, editor: new Ext.form.field.ComboB ...

  3. 黑马程序员 SaveFileDialog的跨线程调用 (专题三)

    <a href="http://edu.csdn.net"target="blank">ASP.Net+Android+IO开发S</a> ...

  4. 硬盘4k对齐教程总结

    4k对齐概念: 4K对齐相关联的是一个叫做“高级格式化”的分区技术.首先先来了解一下什么是叫做“4K 对齐”.其实“4K对齐”相关联的是一个叫做“高级格式化”的分区技术.“高级格式化”是国际硬盘设备与 ...

  5. 线形,柱形,条形数据表(百度Echart插件)

    [获取资源]进入官网,    http://echarts.baidu.com/导航,下载,下拉框下载,常用303k.就是这么简单,就个一个js.[项目使用]新建项目,MyChart具体使用的过程中, ...

  6. sql视图学习笔记--视图

    视图是为用户对数据多种显示需求而创建的,其主要用在一下几种情况: (1)限制用户只能访问特定表特定条件的内容,提高系统的安全性. (2)隐藏表结构.创建多种形式的数透视,满足不同用户需求. (3)将复 ...

  7. HTML字符实体(Character Entities),转义字符串(Escape Sequence)

    为什么要用转义字符串? HTML中<,>,&等有特殊含义(<,>,用于链接签,&用于转义),不能直接使用.这些符号是不显示在我们最终看到的网页里的,那如果我们希 ...

  8. HDU4704+费马小定理

    费马小定理题意:求s1+s2+s3+...+sn;si表示n划分i个数的n的划分的个数,如n=4,则s1=1,s2=3    利用隔板定理可知,就是求(2^n-1)%mod-----Y    现在已知 ...

  9. c缺陷与陷阱笔记-第七章 可移植性代码

    1.移位运算符 如果被移位的对象长度是n位,那么移位计数必须>=0,并且<n,例如对于1个32位的数,移位运算n<<31和n<<0是OK的,n<<32和 ...

  10. 忽然发现,if语句没有相应的continue功能

    就是剩下部分语句不用执行了,但是又不退出当前函数,只退出当前if块.虽说else可以解决问题,但是这样还是会重复写代码,假如continue语句后面的内容是相同的话.当然可以通过再次加一个if语句解决 ...