(Schur's Theorem) If $A$ is positive, then $$\bex \per(A)\geq \det A. \eex$$

Solution. By Exercise I.2.2, $A=T^*T$ for some upper triangular $T$ with non-negative diagonals. Thus $$\beex \bea \det A&=\det T^*\cdot \det T\\ &=\per T^*\cdot \per T\\ &=\per(T^*I)\cdot \per(I\cdot T)\\ &\leq \sqrt{\per(T^*T)\cdot \per (I^*I)}\cdot \sqrt{\per(II^*)\cdot \per (T^*T)}\\ &=\per(T^*T)\\ &=\per(A). \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.9的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. C# list 筛选FindAll

    例如:参数a.list b.ModelId:根据ModelId参数进行筛选 /// <summary> /// 根据ModelId筛选查询出对应的数据 /// </summary&g ...

  2. 用于软件包管理的21个Linux YUM命令

    FROM:http://os.51cto.com/art/201309/411895.htm YUM(Yellowdog Updater Modified)是一款开源命令行及图形化软件包管理工具,面向 ...

  3. 后台字符串转化成json

    function remotecontrol() { var progressbar = $("#progressbar"); $.ajax({ url: myurl, type: ...

  4. 过长文字自动换行的技巧 Word-Break Word-Wrap

    在很多时候,为了防止内容过长把表格或容器撑破, 我们都需要为容器加上自动换行的功能. 实现自动换行,用CSS来实现,通常有两种方式: word-break: 取值为 normal, break-all ...

  5. c++ 链接

    header.h #ifndef HEADER_H #define HEADER_H unsigned long getFac(unsigned short num); ; #endif // HEA ...

  6. PAT-乙级-1036. 跟奥巴马一起编程(15)

    1036. 跟奥巴马一起编程(15) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 美国总统奥巴马不仅呼吁所有人 ...

  7. jquery中事件重复绑定以及解绑问题

    一般的情况下,对于这种情况,我们常规的思路是,先解绑,再绑定,如下: $(selector).unbind('click').bind('click',function(){....}); 当这样会有 ...

  8. 解决浮层弹出如何加上datepicker,并且浮动在上面

    最近在做一个弹出层上弹出的对话框中能弹出一个截止时间的选择框,这个选择框使用datepicker来做. 效果大致是这样的: 但是在做的时候,遇到一个问题,datepicker在弹出层的时候,时间选择框 ...

  9. $.cookie 使用不了的问题定位过程

    最近在项目中需要使用到jquery的cookie,按理说在html头中引入jquery-1.7.1.min.js和jquery.cookie.js,然后在js中就可以使用cookie函数了.像这样使用 ...

  10. javascript中实现sleep的两种方式

    最近在js中要使用到类似于C++中的sleep函数(让cpu休眠).但是js是不可能让cpu休眠,所以可以通过下面的两种方式模拟sleep函数. 方式一:使用setTimeout函数代替.如果在一个循 ...