题目链接:poj_2778_DNA Sequence

题意:

有m个模式串,然后给你一个长度n,问你n长度的DNA序列有多少种不包含这m个模式串

题解:

这题显然要用AC自动机,将模式串的AC自动机建好后,再构建矩阵,矩阵的含义是自动机中0~tot的节点走一步到0~tot的节点的方案数,然后要走n步,所以上一个矩阵快速幂就行了,在建AC自动机的时候要改变一下失败指针的指向,不存在的节点就指向当前节点的失败指针,这样就模拟了AC自动机的匹配过程,需要画图好好理解一下。

 #include<cstdio>
#include<cstring>
#define mst(a,b) memset(a,b,sizeof(a))
#define F(i,a,b) for(int i=a;i<=b;i++)
typedef long long ll;
//-----------------------矩阵-------------------------
const int mat_N=*+,mo=1e5;//矩阵阶数,取膜
int N;
struct mat{
ll c[mat_N][mat_N];
void init(){mst(c,);}
mat operator*(mat b){
mat M;M.init();
F(i,,N)F(j,,N)F(k,,N)M.c[i][j]=(M.c[i][j]+c[i][k]*b.c[k][j])%mo;
return M;
}
mat operator+(mat b){
mat M;
F(i,,N)F(j,,N)M.c[i][j]=(c[i][j]+b.c[i][j])%mo;
return M;
}
mat operator^(ll k){
mat ans,M=(*this);ans.init();
F(i,,N)ans.c[i][i]=;
while(k){if(k&)ans=ans*M;k>>=,M=M*M;}
return ans;
}
}A;
//-----------------------AC自动机-----------------------
const int AC_N=*,tyn=;//数量乘串长,类型数
struct AC_automation{
int tr[AC_N][tyn],cnt[AC_N],Q[AC_N],fail[AC_N],tot;
inline int getid(char x){
if(x=='A')return ;
if(x=='T')return ;
if(x=='G')return ;
if(x=='C')return ;
}
void nw(){cnt[++tot]=;memset(tr[tot],-,sizeof(tr[tot]));}
void init(){tot=-,fail[]=-,nw();}
void insert(char *s,int x=){
for(int len=strlen(s),i=,w;i<len;x=tr[x][w],i++)
if(tr[x][w=getid(s[i])]==-)nw(),tr[x][w]=tot;
cnt[x]++;//串尾标记
}
void build(int head=,int tail=){
for(Q[++tail]=;head<=tail;){
for(int i=,x=Q[head++],p=-;i<tyn;i++)if(~tr[x][i]){
if(x==)fail[tr[][i]]=;
else for(p=fail[x],fail[tr[x][i]]=;~p;p=fail[p])
if(~tr[p][i]){fail[tr[x][i]]=tr[p][i];break;}
if(cnt[fail[tr[x][i]]])cnt[tr[x][i]]=;
Q[++tail]=tr[x][i];
}else if(x==)tr[x][i]=;
else tr[x][i]=tr[fail[x]][i];
}
}
}AC; void build_mat()
{
A.init();
F(i,,AC.tot)F(j,,)if(!AC.cnt[i]&&!AC.cnt[AC.tr[i][j]])A.c[i][AC.tr[i][j]]++;
} int main()
{
ll n,m,ans;char buf[];
while(~scanf("%lld%lld",&n,&m))
{
AC.init();
F(i,,n)scanf("%s",buf),AC.insert(buf);
AC.build(),N=AC.tot,build_mat(),A=A^m,ans=;
F(i,,AC.tot)ans+=A.c[][i];
printf("%lld\n",ans%mo);
}
return ;
}

poj_2778_DNA Sequence(AC自动机+矩阵)的更多相关文章

  1. poj2778DNA Sequence (AC自动机+矩阵快速幂)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud DNA Sequence Time Limit: 1000MS   Memory ...

  2. POJ2778 DNA Sequence(AC自动机 矩阵)

    先使用AC自动机求得状态转移关系,再建立矩阵,mat[i][j]表示一步可从i到j且i,j节点均非终止字符的方案数,则此矩阵的n次方表示n步从i,到j的方法数. #include<cstdio& ...

  3. poj 2778 DNA Sequence ac自动机+矩阵快速幂

    链接:http://poj.org/problem?id=2778 题意:给定不超过10串,每串长度不超过10的灾难基因:问在之后给定的长度不超过2e9的基因长度中不包含灾难基因的基因有多少中? DN ...

  4. POJ 2778 DNA Sequence (AC自动机,矩阵乘法)

    题意:给定n个不能出现的模式串,给定一个长度m,要求长度为m的合法串有多少种. 思路:用AC自动机,利用AC自动机上的节点做矩阵乘法. #include<iostream> #includ ...

  5. 【距离GDOI:128天】【POJ2778】DNA Sequence(AC自动机+矩阵加速)

    已经128天了?怎么觉得上次倒计时150天的日子还很近啊 ....好吧为了把AC自动机搞透我也是蛮拼的..把1030和这道题对比了无数遍...最终结论是...无视时间复杂度,1030可以用这种写法解. ...

  6. POJ2278 DNA Sequence —— AC自动机 + 矩阵优化

    题目链接:https://vjudge.net/problem/POJ-2778 DNA Sequence Time Limit: 1000MS   Memory Limit: 65536K Tota ...

  7. [poj2778]DNA Sequence(AC自动机+矩阵快速幂)

    题意:有m种DNA序列是有疾病的,问有多少种长度为n的DNA序列不包含任何一种有疾病的DNA序列.(仅含A,T,C,G四个字符) 解题关键:AC自动机,实际上就是一个状态转移图,注意能少取模就少取模, ...

  8. poj2778 DNA Sequence(AC自动机+矩阵快速幂)

    Description It's well known that DNA Sequence is a sequence only contains A, C, T and G, and it's ve ...

  9. hdu 2243 考研路茫茫——单词情结 AC自动机 矩阵幂次求和

    题目链接 题意 给定\(N\)个词根,每个长度不超过\(5\). 问长度不超过\(L(L\lt 2^{31})\),只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个? 思路 状态(AC自动 ...

随机推荐

  1. centos7下用yum安装mysql5.7

    1.安装mysql源 下载地址:http://dev.mysql.com/downloads/repo/yum/ 下载之后用yum安装:yum localinstall -y xx.noarch.rp ...

  2. event 实现观察者模式

    看了一些其他人写的,一下就晕了,还是自己写一个给自己看吧. 用event语法糖实现的观察者,与普通的实现,最大的区别在于,Subject的操作中不会直接触发Observer的Update,而是通过ev ...

  3. JAVA: 接入YSDK遇到的问题

    JAVA后台接口: 1, 腾讯开放平台: http://wiki.open.qq.com/wiki/%E9%A6%96%E9%A1%B5 2,YSDK介绍,大概流程: http://wiki.open ...

  4. ACdream 1015 Double Kings

    假设第一个人选的点为P,并且当作根,那么第二个人选的最优情况必然是根p连着的那些点中的一个.然后枚举一下P即可. #pragma comment(linker, "/STACK:102400 ...

  5. java web部署问题

    将maven项目转化成web 项目的过程中,出现了许多问题,下面进行总结,首先是tomcat问题,tomcat的配置,如果在eclipse中开启了tomcat,页面无法展示,此时是环境路径配置不对,应 ...

  6. 做一个视频播放器在没开始播放的时候有一张图片实际上就是拿一张图片盖住视频承载的屏幕当出发。play的时候图片隐藏 img

    saxda 某个元素.style.class='';也可以是.className <!DOCTYPE html><html lang="en"><he ...

  7. Spring Security(04)——认证简介

    目录 1.1     认证过程 1.2     Web应用的认证过程 1.2.1    ExceptionTranslationFilter 1.2.2    在request之间共享Security ...

  8. aps.net 页面事件执行顺序

  9. Java IO 文件与流基础

    Java IO 文件与流基础 @author ixenos 摘要:创建文件.文件过滤.流分类.流结构.常见流.文件流.字节数组流(缓冲区) 如何创建一个文件 #当我们调用File类的构造器时,仅仅是在 ...

  10. Java 集合 JDK1.7的LinkedList

    Java 集合 JDK1.7的LinkedList @author ixenos LinkedList LinkedList是List接口的双向链表实现,JDK1.7以前是双向循环链表,以后是双向非循 ...