题目链接:poj_2778_DNA Sequence

题意:

有m个模式串,然后给你一个长度n,问你n长度的DNA序列有多少种不包含这m个模式串

题解:

这题显然要用AC自动机,将模式串的AC自动机建好后,再构建矩阵,矩阵的含义是自动机中0~tot的节点走一步到0~tot的节点的方案数,然后要走n步,所以上一个矩阵快速幂就行了,在建AC自动机的时候要改变一下失败指针的指向,不存在的节点就指向当前节点的失败指针,这样就模拟了AC自动机的匹配过程,需要画图好好理解一下。

 #include<cstdio>
#include<cstring>
#define mst(a,b) memset(a,b,sizeof(a))
#define F(i,a,b) for(int i=a;i<=b;i++)
typedef long long ll;
//-----------------------矩阵-------------------------
const int mat_N=*+,mo=1e5;//矩阵阶数,取膜
int N;
struct mat{
ll c[mat_N][mat_N];
void init(){mst(c,);}
mat operator*(mat b){
mat M;M.init();
F(i,,N)F(j,,N)F(k,,N)M.c[i][j]=(M.c[i][j]+c[i][k]*b.c[k][j])%mo;
return M;
}
mat operator+(mat b){
mat M;
F(i,,N)F(j,,N)M.c[i][j]=(c[i][j]+b.c[i][j])%mo;
return M;
}
mat operator^(ll k){
mat ans,M=(*this);ans.init();
F(i,,N)ans.c[i][i]=;
while(k){if(k&)ans=ans*M;k>>=,M=M*M;}
return ans;
}
}A;
//-----------------------AC自动机-----------------------
const int AC_N=*,tyn=;//数量乘串长,类型数
struct AC_automation{
int tr[AC_N][tyn],cnt[AC_N],Q[AC_N],fail[AC_N],tot;
inline int getid(char x){
if(x=='A')return ;
if(x=='T')return ;
if(x=='G')return ;
if(x=='C')return ;
}
void nw(){cnt[++tot]=;memset(tr[tot],-,sizeof(tr[tot]));}
void init(){tot=-,fail[]=-,nw();}
void insert(char *s,int x=){
for(int len=strlen(s),i=,w;i<len;x=tr[x][w],i++)
if(tr[x][w=getid(s[i])]==-)nw(),tr[x][w]=tot;
cnt[x]++;//串尾标记
}
void build(int head=,int tail=){
for(Q[++tail]=;head<=tail;){
for(int i=,x=Q[head++],p=-;i<tyn;i++)if(~tr[x][i]){
if(x==)fail[tr[][i]]=;
else for(p=fail[x],fail[tr[x][i]]=;~p;p=fail[p])
if(~tr[p][i]){fail[tr[x][i]]=tr[p][i];break;}
if(cnt[fail[tr[x][i]]])cnt[tr[x][i]]=;
Q[++tail]=tr[x][i];
}else if(x==)tr[x][i]=;
else tr[x][i]=tr[fail[x]][i];
}
}
}AC; void build_mat()
{
A.init();
F(i,,AC.tot)F(j,,)if(!AC.cnt[i]&&!AC.cnt[AC.tr[i][j]])A.c[i][AC.tr[i][j]]++;
} int main()
{
ll n,m,ans;char buf[];
while(~scanf("%lld%lld",&n,&m))
{
AC.init();
F(i,,n)scanf("%s",buf),AC.insert(buf);
AC.build(),N=AC.tot,build_mat(),A=A^m,ans=;
F(i,,AC.tot)ans+=A.c[][i];
printf("%lld\n",ans%mo);
}
return ;
}

poj_2778_DNA Sequence(AC自动机+矩阵)的更多相关文章

  1. poj2778DNA Sequence (AC自动机+矩阵快速幂)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud DNA Sequence Time Limit: 1000MS   Memory ...

  2. POJ2778 DNA Sequence(AC自动机 矩阵)

    先使用AC自动机求得状态转移关系,再建立矩阵,mat[i][j]表示一步可从i到j且i,j节点均非终止字符的方案数,则此矩阵的n次方表示n步从i,到j的方法数. #include<cstdio& ...

  3. poj 2778 DNA Sequence ac自动机+矩阵快速幂

    链接:http://poj.org/problem?id=2778 题意:给定不超过10串,每串长度不超过10的灾难基因:问在之后给定的长度不超过2e9的基因长度中不包含灾难基因的基因有多少中? DN ...

  4. POJ 2778 DNA Sequence (AC自动机,矩阵乘法)

    题意:给定n个不能出现的模式串,给定一个长度m,要求长度为m的合法串有多少种. 思路:用AC自动机,利用AC自动机上的节点做矩阵乘法. #include<iostream> #includ ...

  5. 【距离GDOI:128天】【POJ2778】DNA Sequence(AC自动机+矩阵加速)

    已经128天了?怎么觉得上次倒计时150天的日子还很近啊 ....好吧为了把AC自动机搞透我也是蛮拼的..把1030和这道题对比了无数遍...最终结论是...无视时间复杂度,1030可以用这种写法解. ...

  6. POJ2278 DNA Sequence —— AC自动机 + 矩阵优化

    题目链接:https://vjudge.net/problem/POJ-2778 DNA Sequence Time Limit: 1000MS   Memory Limit: 65536K Tota ...

  7. [poj2778]DNA Sequence(AC自动机+矩阵快速幂)

    题意:有m种DNA序列是有疾病的,问有多少种长度为n的DNA序列不包含任何一种有疾病的DNA序列.(仅含A,T,C,G四个字符) 解题关键:AC自动机,实际上就是一个状态转移图,注意能少取模就少取模, ...

  8. poj2778 DNA Sequence(AC自动机+矩阵快速幂)

    Description It's well known that DNA Sequence is a sequence only contains A, C, T and G, and it's ve ...

  9. hdu 2243 考研路茫茫——单词情结 AC自动机 矩阵幂次求和

    题目链接 题意 给定\(N\)个词根,每个长度不超过\(5\). 问长度不超过\(L(L\lt 2^{31})\),只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个? 思路 状态(AC自动 ...

随机推荐

  1. 分布式版本控制系统Git-----1.Git 初识

    开始工作咯,师傅让我开始学习Git.刚接触我是懵逼的,"分布式版本控制系统"啥玩意啊这是,大家可不能从字面意思上理解啊,刚开始,版本控制么,我以为是团队合作的时候把开发工具.JDK ...

  2. PAT 团体程序设计天梯赛-练习集 L1-003. 个位数统计

    给定一个k位整数N = dk-1*10k-1 + ... + d1*101 + d0 (0<=di<=9, i=0,...,k-1, dk-1>0),请编写程序统计每种不同的个位数字 ...

  3. 【LeetCode】419. Battleships in a Board

    Given an 2D board, count how many different battleships are in it. The battleships are represented w ...

  4. shell初学

    超简单的一段shell代码,查看电脑属性,删除无效安装包,查看天气.FYI  #!/bin/bash echo -e '\n' echo "Hello,`whoami`" echo ...

  5. Unity5系列资源管理AssetBundle——更新实现

    前面我们研究了AssetBundle的打包与加载,现在我们来了解下如何在项目中根据版本号更新内容. 最最重要的一点,细心的朋友应该看到了在加载AssetBundle的MrcAssetManager类中 ...

  6. Struts入门学习(三)---自定义类型转换器

    类型转换器是将浏览器传递的参数进行转换为了与服务器端的参数匹配,先举个例子如果我们想往服务器传递日期类型的参数时我们要怎么让浏览器传过去的让服务器明白 我们新建一个类 ConverterTest.ja ...

  7. 如何自定义JSR-303标准的validator

    在web应用中为了保证数据的有效性而对用户提交的表单数据是必需的,而前台客户端的验证例如javascript并不总是那么安全和可靠,这样我们就需要一个健壮的后台验证框架来处理这个问题.好在java发布 ...

  8. ESFramework 4.0 性能测试

    本实验用于测试ESFramework服务端引擎的性能,测试程序使用ESFramework 4.0版本. 一.准备工作 测试的机器总共有3台,都是普通的PC,一台作为服务器,两台作为客户端. 作为服务器 ...

  9. hdu 1407 测试你是否和LTC水平一样高

    Description 大家提到LTC都佩服的不行,不过,如果竞赛只有这一个题目,我敢保证你和他绝对在一个水平线上! 你的任务是: 计算方程x^2+y^2+z^2= num的一个正整数解.  Inpu ...

  10. 读取文件—open()、read()

    摘自:http://www.iplaypython.com/sys/open.html 在Windows下的powershell打开python: Win+R打开运行窗口,输入powershell,输 ...