现在,重点是要了解并解决HMM 的三个问题。

问题1,已知整个模型,我女朋友告诉我,连续三天,她下班后做的事情分别是:散步,购物,收拾。那么,根据模型,计算产生这些行为的概率是多少。

问题2,同样知晓这个模型,同样是这三件事,我女朋友要我猜,这三天她下班后北京的天气是怎么样的。这三天怎么样的天气才最有可能让她做这样的事情。

问题3,最复杂的,我女朋友只告诉我这三天她分别做了这三件事,而其他什么信息我都没有。她要我建立一个模型,晴雨转换概率,第一天天气情况的概率分布,根据天气情况她选择做某事的概率分布。(惨绝人寰)

而要解决这些问题,伟大的大师们分别找出了对应的算法。问题一,Forward Algorithm,向前算法,或者 Backward Algo,向后算法。 问题二,Viterbi Algo,维特比算法。问题三,Baum-Welch Algo,鲍姆-韦尔奇算法(中文好绕口)。

作者:henry
链接:https://www.zhihu.com/question/20962240/answer/64187492
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

hmm三个问题的更多相关文章

  1. 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数

    隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...

  2. HMM:隐马尔可夫模型HMM

    http://blog.csdn.net/pipisorry/article/details/50722178 隐马尔可夫模型 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模 ...

  3. 隐马尔可夫(HMM)模型

    隐马尔可夫(HMM)模型 隐马尔可夫模型,是一种概率图模型,一种著名的有向图模型,一种判别式模型.主要用于时许数据建模,在语音识别.自然语言处理等领域广泛应用. 概率图模型分为两类,一类:使用有向无环 ...

  4. hmm和Veterbi算法(一)

    只是略微的看了些,有点感觉,还未深入,做个记录. 参考: 隐马尔可夫 (HMM).前 / 后向算法.Viterbi 算法 再次总结 谁能通俗的讲解下 viterbi 算法? 数学之美第二版的第 26 ...

  5. Python实现HMM(隐马尔可夫模型)

    1. 前言 隐马尔科夫HMM模型是一类重要的机器学习方法,其主要用于序列数据的分析,广泛应用于语音识别.文本翻译.序列预测.中文分词等多个领域.虽然近年来,由于RNN等深度学习方法的发展,HMM模型逐 ...

  6. HMM隐马尔可夫模型来龙去脉(二)

    目录 前言 预备知识 一.估计问题 1.问题推导 2.前向算法/后向算法 二.序列问题 1.问题推导 2.维特比算法 三.参数估计问题 1.问题推导 2.期望最大化算法(前向后向算法) 总结 前言 H ...

  7. ZH奶酪:隐马尔可夫模型学习小记——forward算法+viterbi算法+forward-backward算法(Baum-welch算法)

    网上关于HMM的学习资料.博客有很多,基本都是左边摘抄一点,右边摘抄一点,这里一个图,那里一个图,公式中有的变量说不清道不明,学起来很费劲. 经过浏览几篇博文(其实有的地方写的也比较乱),在7张4开的 ...

  8. 应用HTK搭建语音拨号系统3:创建绑定状态的三音素HMM模型

    选自:http://maotong.blog.hexun.com/6261873_d.html 苏统华 哈尔滨工业大学人工智能研究室 2006年10月30日 声明:版权所有,转载请注明作者和来源 该系 ...

  9. HMM 自学教程(三)隐藏模式

    本系列文章摘自 52nlp(我爱自然语言处理: http://www.52nlp.cn/),原文链接在 HMM 学习最佳范例,这是针对 国外网站上一个 HMM 教程 的翻译,作者功底很深,翻译得很精彩 ...

随机推荐

  1. python读取文件embedded null character是什么原因

    地址的\需要转义符: 将\写成\\ 或者在整个字符串前面添加字母r

  2. CoreData 多表 关联

    本文转载至 http://www.jianshu.com/p/e9f3b5e0cd19 1.概念简介 coreData中存在复杂的数据关系时,一张表难以满足需求,此时就需要了解使用coreData多表 ...

  3. 《转》Python学习(19)-python函数(二)-关于lambda

    转自http://www.cnblogs.com/BeginMan/p/3178103.html 一.lambda函数 1.lambda函数基础: lambda函数也叫匿名函数,即,函数没有具体的名称 ...

  4. c++ vector详解

    容器有太多需要清楚细节的地方,同时也有太多值得学习的地方.下文作为学习.工作中用到vector的总结. 1. 赋值运算=的实现原理 在使用赋值操作时,如果不清楚内部是怎么实现,那么用起来会畏手畏脚. ...

  5. 分布式实时日志系统(二) 环境搭建之 flume 集群搭建/flume ng资料

    最近公司业务数据量越来越大,以前的基于消息队列的日志系统越来越难以满足目前的业务量,表现为消息积压,日志延迟,日志存储日期过短,所以,我们开始着手要重新设计这块,业界已经有了比较成熟的流程,即基于流式 ...

  6. canvas练习 - 圆

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. 攻防对抗中常用的windows命令(渗透测试和应急响应)

    一.渗透测试 1.信息收集类 #查看系统信息 >systeminfo #查看用户信息 >net user >net user xxx #查看网络信息 >ipconfig /al ...

  8. Egret动态设置按钮的图片

    参考: 动态设置Button按钮的状态图片 按钮有3个状态,up down disabled.这里区别于source,source.down,source.disabled,而是每个状态单独一个ima ...

  9. jenkins中windows节点设置开机自启动slave-agent

    做web UI自动化时,为了提高效率,用了多台windows节点来跑自动化,但slave-agent每次在关机后都得手工启动,麻烦,网上看到了一系列说启动任务中,感觉还是不考虑,这里使用windows ...

  10. 慕课学习--OSI与TCP/IP网络协议

    **OSI:开放系统互连参考模型 (Open System Interconnect 简称OSI)是国际标准化组织(ISO)和国际电报电话咨询委员会(CCITT)联合制定的开放系统互连参考模型,为开放 ...