reference:Hign-Speed Tracking with Kernelzied Correlation Filters

questions:

The core componet of most modern trackers is a discriminative classifier, tasked with distingushing between the target and the surrounding environment. To cope with natural image changes, this classifier is typically trained with translated and scaled sample patches. Such sets of samples are riddled with redundancies--any overlapping pixels are constrained to be the same.

solutions:

we proposed an analytic model for datasets of thousands of translated patches. By showing that the resulting data matrix is circulant, we can diagonalize it with the discrete Fourier transform, reducing both storage and compution by several orders of magnitude. Interestingly,

linear regression our  formutlation=a correlation filter

  which is used by some of the fastest competitive trackers.

for kernel regression,

kernel regression=a new kernelized correlation filter(KCF)

  which unlike other kernel algorithms has the exact same complexity as its linear counterpart.

Building on ti ,we also propose a fast multi-channel extension of linear correlation filters, via a linear kernel, which we call dual correlation filter(DCT).

see, as the topic demonstrates--high-speed tracking, focus on storage and computation.

Hign-Speed Tracking with Kernelzied Correlation Filters的更多相关文章

  1. Correlation Filter in Visual Tracking系列一:Visual Object Tracking using Adaptive Correlation Filters 论文笔记

    Visual Object Tracking using Adaptive Correlation Filters 一文发表于2010的CVPR上,是笔者所知的第一篇将correlation filt ...

  2. KCF:High-Speed Tracking with Kernelized Correlation Filters 的翻译与分析(一)。分享与转发请注明出处-作者:行于此路

    High-Speed Tracking with Kernelized Correlation Filters 的翻译与分析 基于核相关滤波器的高速目标跟踪方法,简称KCF 写在前面,之所以对这篇文章 ...

  3. High-Speed Tracking with Kernelized Correlation Filters

          2015年的一篇论文,可参考:http://blog.csdn.net/carrierlxksuper/article/details/46461245.      另参考:http:// ...

  4. High-Speed Tracking with Kernelized Correlation Filters(二)

          首先看看get_features函数.             首先判断是hog特征还是gray,分两种情况.             如果是hog特征,调用fhog函数,返回x,并将矩阵 ...

  5. correlation filters in object tracking

    http://www.cnblogs.com/hanhuili/p/4266990.html Correlation Filter in Visual Tracking系列一:Visual Objec ...

  6. Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking---随笔

    Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking DCF跟踪算法因边界效应,鲁棒性较差.SRD ...

  7. Multi-hierarchical Independent Correlation Filters for Visual Tracking(MFT)略读

    作者写道: 有幸在本届的VOT 2018 主赛中,我们的参赛方案Multi-solution Fusion for Visual Tracking(MFT)获得第一名的成绩,通过结果来看,MFT无论在 ...

  8. correlation filters in object tracking2

    http://www.cnblogs.com/hanhuili/p/4281077.html Correlation Filter in Visual Tracking系列二:Fast Visual ...

  9. call Kernelized Correlation Filters Tracker(Matab) in Qt(c++)

    recently, i need call the KCF tracker in my graduation project. the KCF tracker is fast and best per ...

随机推荐

  1. python 集合取最大最小值

    #Create a set seta = , , , , , ]) #Find maximum value print(max(seta)) #Find minimum value print(min ...

  2. Windows系统下在Eclipse中集成Python

    我现在偶尔开发代码,已经不用Eclipse了,主要原因是查看Jar包中的代码反编译十分不便,项目加载的时候卡,偶尔还会崩溃 用Intellij IDEA和PyCharm 原来的笔记如何在Eclipse ...

  3. CentOS 6.5安装配置LAMP服务器(Apache+PHP5+MySQL)的方法

    CentOS 6.5安装配置LAMP服务器(Apache+PHP5+MySQL)的方法 准备篇: 1.配置防火墙,开启80端口.3306端口vi /etc/sysconfig/iptables-A I ...

  4. 51nod 1682 中位数计数(前缀和)

    51nod 1682 中位数计数 思路: sum[i]表示到i为止的前缀和(比a[i]小的记为-1,相等的记为0,比a[i]大的记为1,然后求这些-1,0,1的前缀和): hash[sum[i]+N] ...

  5. (转)C#制作一个消息拦截器

    首先,我们先要制作一个自定义Attribute,让他可以具有上下文读取功能,所以我们这个Attribute类要同时继承Attribute和IContextAttribute. 接口IContextAt ...

  6. 消息队列Kafka学习记录

    Kafka其实只是众多消息队列中的一种,对于Kafka的具体释义我这里就不多说了,详见:http://baike.baidu.com/link?url=HWFYszYuMdP_lueFH5bmYnlm ...

  7. JSON自定义排序

    var json=[{ Name:'张三', Addr:'重庆', Age:'20' },{ Name:'张三3', Addr:'重庆2', Age:'25' },{ Name:'张三2', Addr ...

  8. Linux 虚拟内存和物理内存的理解

    关于Linux 虚拟内存和物理内存的理解. 首先,让我们看下虚拟内存: 第一层理解 1. 每个进程都有自己独立的4G内存空间,各个进程的内存空间具有类似的结构 2. 一个新进程建立的时候,将会建立起自 ...

  9. 雷林鹏分享:Ruby 数据类型

    Ruby 数据类型 本章节我们将为大家介绍 Ruby 的基本数据类型. Ruby支持的数据类型包括基本的Number.String.Ranges.Symbols,以及true.false和nil这几个 ...

  10. GO 和 KEGG 的区别 | GO KEGG数据库用法 | 基因集功能注释 | 代谢通路富集

    一直都搞不清楚这两者的具体区别. 其实初学者搞不清楚很正常,因为它们的本质是相通的,都是对基因进行归类注释的数据库. 建议初学者自己使用一下这两个数据库,应该很快就能明白其中的区别. (抱歉之前没讲清 ...