【CF724F】Uniformly Branched Trees 动态规划
【CF724F】Uniformly Branched Trees
题意:询问n个点的每个非叶子点度数恰好等于d的不同构的无根树的数目。
$n\le 1000,d\le 10$。
题解:先考虑有根树的版本。我们用$DP(n,m,k)$表示n个点,其中根的度数为m,其余点度数为d,根的最大的儿子的子树不能超过k的方案数。转移时我们可以枚举有多少个子树大小为k的。假如有i个,则贡献为:$DP(n-ik,m-i,k-1)\times{{DP(k,d-1,k-1)+i-1} \choose{i}}$,采用记忆化搜索是一个非常优秀的方法。
如果是无根树呢?如果有一个点为重心,则我们令重心为根即可。如果有两个重心,我们枚举其中一个,用组合数算一算即可。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
int n,m;
ll P;
ll ine[1010];
int f[1010][11][1010];
ll DP(int n,int d,int k)
{
k=min(k,n-1);
if(f[n][d][k]!=-1) return f[n][d][k];
if((n==1&&d==m-1)||(n==1&&!d)) return 1;
if(n==1||!k) return 0;
int j;
ll ret=DP(n,d,k-1),t=DP(k,m-1,k),tmp=1;
for(j=1;j*k<n&&j<=d;j++)
{
tmp=tmp*(t+j-1)%P*ine[j]%P;
ret=(ret+tmp*DP(n-k*j,d-j,k-1))%P;
}
return f[n][d][k]=ret;
}
int main()
{
scanf("%d%d%lld",&n,&m,&P);
if(n==1||n==2)
{
puts("1");
return 0;
}
if((n-2)%(m-1)!=0)
{
puts("0");
return 0;
}
int i;
ine[0]=ine[1]=1;
for(i=2;i<=n;i++) ine[i]=P-(P/i)*ine[P%i]%P;
memset(f,-1,sizeof(f));
ll ans=DP(n,m,(n-1)/2);
if(!(n&1))
{
ll t=DP(n/2,m-1,n/2-1);
ans=(ans+t*(t+1)/2)%P;
}
printf("%lld",ans);
return 0;
}
【CF724F】Uniformly Branched Trees 动态规划的更多相关文章
- CF724F Uniformly Branched Trees
CF724F Uniformly Branched Trees 有根树可以统计.无根树难以统计.因为可以换根. 所以不让换根:只要两个无根树在重心位置不同构,就一定不同构 每个本质不同的树在重心位置统 ...
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) F - Uniformly Branched Trees 无根树->有根树+dp
F - Uniformly Branched Trees #include<bits/stdc++.h> #define LL long long #define fi first #de ...
- 【CF724F】Uniformly Branched Trees
题意:询问n个点的每个非叶子点度数恰好等于d的不同构的无根树的数目. n≤1000,d≤10n≤1000,d≤10. 题解: 这题真的是一道非常好的题 首先考虑有根树 定义f[i][j][k]表示i个 ...
- 「Codeforces 724F」Uniformly Branched Trees
题目大意 如果两棵树可以通过重标号后变为完全相同,那么它们就是同构的. 将中间节点定义为度数大于 \(1\) 的节点.计算由 \(n\) 个节点,其中所有的中间节点度数都为 \(d\) 的互不同构的树 ...
- LEETCODE —— Unique Binary Search Trees [动态规划]
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees 动态规划
C. Coloring Trees 题目连接: http://www.codeforces.com/contest/711/problem/C Description ZS the Coder and ...
- 高考集训讲课(To 高一)
高考集训讲课(To 高一) 主要是怕下午讲着讲着把自己讲懵了,有一定的迷糊概率 经过机房的讨论,一致认为插头\(DP\)实用性不大,所以这次不讲了,先把重要的讲一讲. 顺便吐槽一下,凭什么另外几个人都 ...
- 『正睿OI 2019SC Day6』
动态规划 \(dp\)早就已经是经常用到的算法了,于是老师上课主要都在讲题.今天讲的主要是三类\(dp\):树形\(dp\),计数\(dp\),\(dp\)套\(dp\).其中计数\(dp\)是我很不 ...
- Todo List
Contest 11.13 2016ACM/ICPC亚洲区青岛站(5/13, solved 7/13) Training 11.06 2016年中国大学生程序设计竞赛(合肥)(solved 6/10) ...
随机推荐
- HTML5 touche vents drag to move & AF actionsheet by longTap
$('img').on("touchstart",function(E){ //E.preventDefault();E.stopPropagation(); var el=thi ...
- 关于SpringMVC Json使用
很简单的一个东西,这里就不做过多介绍了,写一个小Demo,随手记录下. 首先,在搭好SpringMVC工程环境之后,如果想用Spring自带的Json,需要额外的添加2个JAR包: 1.jackson ...
- 设置wetty不需要账号登录便可进行命令行操作
前一篇随笔我们将了Linux怎么安装部署Wetty服务,但是我们看到,在浏览器中输入http://127.0.0.1:3000进行访问的时候,还需要我们输入账号密码进行认证(如下图第一行所示). 但在 ...
- UNIX环境编程学习笔记(14)——文件I/O之临时文件
lienhua342014-10-01 ISO C 标准 I/O 库提供了个两个函数 tmpnam 和 tmpfile 以帮助创建临时文件, #include <stdio.h> char ...
- Mac OS终端中设置颜色高亮和自动补全
已测试通过,原文:http://blog.csdn.net/songjinshi/article/details/8945809 一.颜色高亮显示 针对terminal采用bash模式: 编辑 ~/. ...
- vue如何加入百度联盟广告
在百度联盟代码位管理中创建好对应的代码位之后,点击获取代码,会看到这样一段js 直接复制粘贴到自己网页中便可显示对应广告. 在vue中由于都是vue组件,不支持直接在组件中加入这样一段一段的js代码, ...
- 如何分析解决Android ANR(转载)
转载自:http://blog.csdn.net/dadoneo/article/details/8270107 一:什么是ANR ANR:Application Not Responding,即应用 ...
- 第四章 TCP粘包/拆包问题的解决之道---4.2--- 未考虑TCP粘包导致功能异常案例
4.2 未考虑TCP粘包导致功能异常案例 如果代码没有考虑粘包/拆包问题,往往会出现解码错位或者错误,导致程序不能正常工作. 4.2.1 TimeServer 的改造 Class : TimeServ ...
- OpenGl 知识一
写在前面 啦啦啦,搞了很久的Unity Shaders,越学越觉得基础知识很重要.学Unity Shader的时候,总会想,shader到底是什么呢?shader的pipeline是什么呢?它们是怎么 ...
- linux-友好显示文件大小
4850905319b / 1024 /1024/1024 = 4.6G ls -lh