【CF724F】Uniformly Branched Trees 动态规划
【CF724F】Uniformly Branched Trees
题意:询问n个点的每个非叶子点度数恰好等于d的不同构的无根树的数目。
$n\le 1000,d\le 10$。
题解:先考虑有根树的版本。我们用$DP(n,m,k)$表示n个点,其中根的度数为m,其余点度数为d,根的最大的儿子的子树不能超过k的方案数。转移时我们可以枚举有多少个子树大小为k的。假如有i个,则贡献为:$DP(n-ik,m-i,k-1)\times{{DP(k,d-1,k-1)+i-1} \choose{i}}$,采用记忆化搜索是一个非常优秀的方法。
如果是无根树呢?如果有一个点为重心,则我们令重心为根即可。如果有两个重心,我们枚举其中一个,用组合数算一算即可。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
int n,m;
ll P;
ll ine[1010];
int f[1010][11][1010];
ll DP(int n,int d,int k)
{
k=min(k,n-1);
if(f[n][d][k]!=-1) return f[n][d][k];
if((n==1&&d==m-1)||(n==1&&!d)) return 1;
if(n==1||!k) return 0;
int j;
ll ret=DP(n,d,k-1),t=DP(k,m-1,k),tmp=1;
for(j=1;j*k<n&&j<=d;j++)
{
tmp=tmp*(t+j-1)%P*ine[j]%P;
ret=(ret+tmp*DP(n-k*j,d-j,k-1))%P;
}
return f[n][d][k]=ret;
}
int main()
{
scanf("%d%d%lld",&n,&m,&P);
if(n==1||n==2)
{
puts("1");
return 0;
}
if((n-2)%(m-1)!=0)
{
puts("0");
return 0;
}
int i;
ine[0]=ine[1]=1;
for(i=2;i<=n;i++) ine[i]=P-(P/i)*ine[P%i]%P;
memset(f,-1,sizeof(f));
ll ans=DP(n,m,(n-1)/2);
if(!(n&1))
{
ll t=DP(n/2,m-1,n/2-1);
ans=(ans+t*(t+1)/2)%P;
}
printf("%lld",ans);
return 0;
}
【CF724F】Uniformly Branched Trees 动态规划的更多相关文章
- CF724F Uniformly Branched Trees
CF724F Uniformly Branched Trees 有根树可以统计.无根树难以统计.因为可以换根. 所以不让换根:只要两个无根树在重心位置不同构,就一定不同构 每个本质不同的树在重心位置统 ...
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) F - Uniformly Branched Trees 无根树->有根树+dp
F - Uniformly Branched Trees #include<bits/stdc++.h> #define LL long long #define fi first #de ...
- 【CF724F】Uniformly Branched Trees
题意:询问n个点的每个非叶子点度数恰好等于d的不同构的无根树的数目. n≤1000,d≤10n≤1000,d≤10. 题解: 这题真的是一道非常好的题 首先考虑有根树 定义f[i][j][k]表示i个 ...
- 「Codeforces 724F」Uniformly Branched Trees
题目大意 如果两棵树可以通过重标号后变为完全相同,那么它们就是同构的. 将中间节点定义为度数大于 \(1\) 的节点.计算由 \(n\) 个节点,其中所有的中间节点度数都为 \(d\) 的互不同构的树 ...
- LEETCODE —— Unique Binary Search Trees [动态规划]
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees 动态规划
C. Coloring Trees 题目连接: http://www.codeforces.com/contest/711/problem/C Description ZS the Coder and ...
- 高考集训讲课(To 高一)
高考集训讲课(To 高一) 主要是怕下午讲着讲着把自己讲懵了,有一定的迷糊概率 经过机房的讨论,一致认为插头\(DP\)实用性不大,所以这次不讲了,先把重要的讲一讲. 顺便吐槽一下,凭什么另外几个人都 ...
- 『正睿OI 2019SC Day6』
动态规划 \(dp\)早就已经是经常用到的算法了,于是老师上课主要都在讲题.今天讲的主要是三类\(dp\):树形\(dp\),计数\(dp\),\(dp\)套\(dp\).其中计数\(dp\)是我很不 ...
- Todo List
Contest 11.13 2016ACM/ICPC亚洲区青岛站(5/13, solved 7/13) Training 11.06 2016年中国大学生程序设计竞赛(合肥)(solved 6/10) ...
随机推荐
- [转]仿91助手的PC与android手机通讯
仿91助手的PC与android手机通讯 原文 知道91助手和豌豆莢吧? 说到这两个东西,最让人好奇的应该是就是和手机的交互了.我之前有研究过电脑和安卓的交互,基本功能已经走通了,在这里我想分享一下. ...
- Java学习之——JavaBeans
1.什么是JavaBeans? JavaBeans是Java语言中可以重复使用的软件组件,它们是一种特殊的Java类,将很多的对象封装到了一个对象(bean)中.特点是 可序列化, 提供无参构造器, ...
- 适用于Win8的Office2003_SP3精简版集成各类补丁+兼容包
适用于Win8的Office2003_SP3精简版集成各类补丁+兼容包软件名称: Office 软件版本: Office2003_SP3 软件大小: 104M 软件语言: 简体中文 软件授权: 破解 ...
- JavaBridge
有的时候我们需要在PHP里调用JAVA平台封装好的jar包里的class类和方法 一般的做法是采用php-java-bridge做桥接 1.实现原理: 先打开java的一个监听端口,php调用java ...
- Spring学习总结五——SpringIOC容器五
一:spring组件扫描 可以使用注解的方式,代替在xml配置文件配置bean,可以减少配置文件的书写,只需要在spring容器配置 文件中配置<context:component-scan b ...
- linux 中搜索命令的对比
1.find find是最常用和最强大的查找命令.它能做到实时查找,精确查找,但速度慢. find的使用格式如下: #find [指定目录] [指定条件] [指定动作] 指定目录:是指所要搜索的目录和 ...
- Android内存泄漏检測与MAT使用
公司相关项目须要进行内存优化.所以整理了一些分析内存泄漏的知识以及工作分析过程. 本文中不会刻意的编写一个内存泄漏的程序,然后利用工具去分析它.而是通过介绍相关概念,来分析怎样寻找内存泄漏.并附上自己 ...
- Ubuntu 16.04服务器 配置
1. 修改用户名称:切换到root打开如下两个配置文件 sudo vim /etc/passwd 把我想改的"xxx"这个用户名改为"way"了,保存并退出 s ...
- Spring @Lazy
@DependsOn用于强制初始化其他Bean.可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean. @DependsOn ...
- ios开发之--所有设备的屏幕尺寸
所有设备型号官网地址:https://www.theiphonewiki.com/wiki/Models iPhone: 机型 像素 比例 像素密度 屏幕尺寸 机型代码 发布日期 iPhone 2g ...