#coding=utf8
import numpy as np
import pandas as pd
import re
from gensim import corpora, models, similarities
import gensim
from nltk.corpus import stopwords

df = pd.read_csv("./input/HillaryEmails.csv")
# 原邮件数据中有很多Nan的值,直接扔了。
df = df[['Id', 'ExtractedBodyText']].dropna()

def clean_email_text(text):
    text = text.replace('\n'," ") #新行,我们是不需要的
    text = re.sub(r"-", " ", text) #把 "-" 的两个单词,分开。(比如:july-edu ==> july edu)
    text = re.sub(r"\d+/\d+/\d+", "", text) #日期,对主体模型没什么意义
    text = re.sub(r"[0-2]?[0-9]:[0-6][0-9]", "", text) #时间,没意义
    text = re.sub(r"[\w]+@[\.\w]+", "", text) #邮件地址,没意义
    text = re.sub(r"/[a-zA-Z]*[:\//\]*[A-Za-z0-9\-_]+\.+[A-Za-z0-9\.\/%&=\?\-_]+/i", "", text) #网址,没意义
    pure_text = ''
    # 以防还有其他特殊字符(数字)等等,我们直接把他们loop一遍,过滤掉
    for letter in text:
        # 只留下字母和空格
        if letter.isalpha() or letter==' ':
            pure_text += letter
    # 再把那些去除特殊字符后落单的单词,直接排除。
    # 我们就只剩下有意义的单词了。
    text = ' '.join(word for word in pure_text.split() if len(word)>1)
    return text

docs = df['ExtractedBodyText']
docs = docs.apply(lambda s: clean_email_text(s))
doclist = docs.values
stopwords = set(stopwords.words('english'))

texts = [[word for word in doc.lower().split() if word not in stopwords] for doc in doclist]

dictionary = corpora.Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]

lda = gensim.models.ldamodel.LdaModel(corpus=corpus, id2word=dictionary, num_topics=20)

print lda.print_topics(num_topics=20, num_words=5)

  

LDA模型应用实践-希拉里邮件主题分类的更多相关文章

  1. 文本主题抽取:用gensim训练LDA模型

    得知李航老师的<统计学习方法>出了第二版,我第一时间就买了.看了这本书的目录,非常高兴,好家伙,居然把主题模型都写了,还有pagerank.一路看到了马尔科夫蒙特卡罗方法和LDA主题模型这 ...

  2. 【自然语言处理】利用LDA对希拉里邮件进行主题分析

    首先是读取数据集,并将csv中ExtractedBodyText为空的给去除掉 import pandas as pd import re import os dir_path=os.path.dir ...

  3. LDA( Latent Dirichlet Allocation)主题模型 学习报告

    1     问题描述 LDA由Blei, David M..Ng, Andrew Y..Jordan于2003年提出,是一种主题模型,它可以将文档集中每篇文档的主题以概率分布的形式给出,从而通过分析一 ...

  4. python应用:主题分类(gensim lda)

    安装第三方包:gensim 首先,执行去停词操作(去除与主题无关的词) #-*-coding:utf8-*- import jieba def stopwordslist(filepath): sto ...

  5. 机器学习Matlab打击垃圾邮件的分类————朴素贝叶斯模型

    该系列来自于我<人工智能>课程回顾总结,以及实验的一部分进行了总结学习机 垃圾分类是有监督的学习分类最经典的案例,本文首先回顾了概率论的基本知识.则以及朴素贝叶斯模型的思想.最后给出了垃圾 ...

  6. LDA模型了解及相关知识

    什么是LDA? LDA是基于贝叶斯模型的,涉及到贝叶斯模型离不开“先验分布”,“数据(似然)”和"后验分布"三块.贝叶斯相关知识:先验分布 + 数据(似然)= 后验分布. 贝叶斯模 ...

  7. 大佬整理出来的干货:LDA模型实现—Python文本挖掘

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取htt ...

  8. LDA模型笔记

    “LDA(Latent Dirichlet Allocation)模型,模型主要解决文档处理领域的问题,比如文章主题分类.文章检测.相似度分析.文本分段和文档检索等问题.LDA主题模型是一个三层贝叶斯 ...

  9. lda模型的python实现

    LDA(Latent Dirichlet Allocation)是一种文档主题生成模型,最近看了点资料,准备使用python实现一下.至于数学模型相关知识,某度一大堆,这里也给出之前参考过的一个挺详细 ...

随机推荐

  1. STL_容器共通能力

    1. 来自教程: ◆ 所有容器提供的都是值(value)语意,而非引用(reference)语意.容器执行插入元素的操作时,内部实施拷贝动作.所以STL容器内存储的元素必须能够被拷贝(必须提供拷贝构造 ...

  2. 字符集(编码)转换_Qt532_QString

    1.网上的资料: 1.1.参考网址:http://blog.csdn.net/changsheng230/article/details/6588447 1.2.网页内容: “ Qt 使用Unicod ...

  3. Android AlarmManager 的使用

    AlarmManager简介及使用场景: AlarmManager的使用机制有的称呼为全局定时器,有的称呼为闹钟.通过对它的使用,它的作用和Timer有点相似. 都有两种相似的用法: (1).在指定时 ...

  4. JavaScript算法相关

    1. 不使用循环,创建一个长度为100的数组,并且每个元素的值等于它的下标? Array.apply(null, {length: N}).map(Function.call, Number); Ar ...

  5. Vultr新推出3.5美元/月套餐,并且支持微信支付了

    先前Vultr重新推出了2.5美元/月的套餐,但是不支持IPv4,所以不那么受国内朋友的欢迎,迫于压力,这不最近就推出了3.5美元/月的套餐了,这个套餐是支持IPv4的,有需要的朋友可以上车了,htt ...

  6. Java 常用对象-BigDecimal

    2017-11-02 22:03:14 BigDecimal类:不可变的.任意精度的有符号十进制数.BigDecimal 由任意精度的整数非标度值 和 32 位的整数标度 (scale) 组成.如果为 ...

  7. vue.js选择if(条件渲染)详解

    vue.js选择if(条件渲染)详解 一.总结 一句话总结: v-if <!DOCTYPE html> <html lang="en"> <head& ...

  8. Tomcat 中文乱码 设置UTF-8编码 问题解决办法

    在Java Web开发中,http请求带有中文字符的URI如果不处理容易出现乱码问题:这是因为Tomcat容器默认编码是iso-8859-1引起的,因此要避免出现乱码就要需要做相应的处理.解决办法如下 ...

  9. ContentPresenter

    这是2年前写了一篇文章 http://www.cnblogs.com/Clingingboy/archive/2008/07/03/wpfcustomcontrolpart-1.html 我们先来看M ...

  10. mycat分布式mysql中间件(自增主键)

    一.全局序列号 全局序列号是MyCAT提供的一个新功能,为了实现分库分表情况下,表的主键是全局唯一,而默认的MySQL的自增长主键无法满足这个要求.全局序列号的语法符合标准SQL规范,其格式为:nex ...